, Volume 69, Issue 10, pp 2024–2031 | Cite as

Recent Progress in High Entropy Alloy Research

  • B. E. MacDonald
  • Z. Fu
  • B. Zheng
  • W. Chen
  • Y. Lin
  • F. Chen
  • L. Zhang
  • J. Ivanisenko
  • Y. Zhou
  • H. Hahn
  • E. J. Lavernia


Since their discovery in 2004, high-entropy alloys (HEAs) have generated significant interest from the scientific community. Based on a multi-principal element design approach, HEAs are engineered to possess a unique random solid solution (RSS) crystalline structure, in which each of the constituent elements has an equal probability of occupying a given lattice site. Published literature reports that certain HEAs exhibit exceptional chemical, physical, mechanical and functional properties that are attributed to the presence of a RSS phase. Not surprisingly, research on HEAs has begun to expand at an accelerated rate. The scientific and engineering topics being studied include: experimentally measuring various properties in HEA systems, understanding the effect of the RSS on these properties, and developing methods for predicting the formation of RSS phases. Accordingly, the goal of this brief review is to introduce the field of HEAs, discuss their core concepts, highlight exceptional properties, and discuss current design aspects.



The authors would like to thank the US Army Research Office (W911NF-16-1-0269) and the Alexander von Humboldt Research Award for Senior Researchers for funding.


  1. 1.
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng., A 375–377, 213 (2004).CrossRefGoogle Scholar
  2. 2.
    J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
  3. 3.
    C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, and T.-T. Shun, Metall. Mater. Trans. A 35, 1465 (2004).CrossRefGoogle Scholar
  4. 4.
    J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chou, Metall. Mater. Trans. A 35, 2533 (2004).CrossRefGoogle Scholar
  5. 5.
    P.-K. Huang, J.-W. Yeh, T.-T. Shun, and S.-K. Chen, Adv. Eng. Mater. 6, 74 (2004).CrossRefGoogle Scholar
  6. 6.
    T.K. Chen, T.T. Shun, J.W. Yeh, and M.S. Wong, Surf. Coat. Technol. 188, 193 (2004).CrossRefGoogle Scholar
  7. 7.
    M.-H. Tsai and J.-W. Yeh, Mater. Res. Lett. 2, 107 (2014).CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, T.T. Zou, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater Sci. 61, 1 (2014).CrossRefGoogle Scholar
  9. 9.
    E.J. Pickering and N.G. Jones, Int. Mater. Rev. 61, 183 (2016).CrossRefGoogle Scholar
  10. 10.
    D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
  11. 11.
    M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys—Fundamentals and Applications, 1st ed. (Berlin: Springer, 2016).CrossRefGoogle Scholar
  12. 12.
    B.S. Gao, J.-W. Yeh, and S. Ranganathan, High-Entropy Alloys, 1st ed. (Butterworth: Heinemann, 2016).CrossRefGoogle Scholar
  13. 13.
    J.W. Yeh, Eur. J. Control 31, 633 (2006).Google Scholar
  14. 14.
    E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones, Scr. Mater. 113, 106 (2016).CrossRefGoogle Scholar
  15. 15.
    J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, and S.-J. Lin, Mater. Chem. Phys. 103, 41 (2007).CrossRefGoogle Scholar
  16. 16.
    L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, and N.G. Jones, Acta Mater. 122, 11 (2017).CrossRefGoogle Scholar
  17. 17.
    K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, Acta Mater. 61, 4887 (2013).CrossRefGoogle Scholar
  18. 18.
    M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, and S.V. Divinski, J. Alloys Compd. 688, 994 (2016).CrossRefGoogle Scholar
  19. 19.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).CrossRefGoogle Scholar
  20. 20.
    F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
  21. 21.
    Y. Yuan, Y. Wu, X. Tong, H. Zhang, H. Wang, X.J. Liu, L. Ma, H.L. Suo, and Z.P. Lu, Acta Mater. 125, 481 (2017).CrossRefGoogle Scholar
  22. 22.
    O.N. Senkov, S.V. Senkova, and C. Woodward, Acta Mater. 68, 214 (2014).CrossRefGoogle Scholar
  23. 23.
    Z. Wu, C.M. Parish, and H. Bei, J. Alloys Compd. 647, 815 (2015).CrossRefGoogle Scholar
  24. 24.
    S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Acta Mater. 59, 182 (2011).CrossRefGoogle Scholar
  25. 25.
    S.G. Ma, S.F. Zhang, M.C. Gao, P.K. Liaw, and Y. Zhang, JOM 65, 1751 (2013).CrossRefGoogle Scholar
  26. 26.
    Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, and E.J. Lavernia, Acta Mater. 107, 59 (2016).CrossRefGoogle Scholar
  27. 27.
    Y. Zou, J.M. Wheeler, H. Ma, P. Okle, and R. Spolenak, Nano Lett. 17, 1569 (2017).CrossRefGoogle Scholar
  28. 28.
    Y. Brif, M. Thomas, and I. Todd, Scr. Mater. 99, 93 (2015).CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
  30. 30.
    D.J.M. King, S.C. Middleburgh, A.G. McGregor, and M.B. Cortie, Acta Mater. 104, 172 (2016).CrossRefGoogle Scholar
  31. 31.
    O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward, Nat. Commun. 6, 6529 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • B. E. MacDonald
    • 1
  • Z. Fu
    • 1
  • B. Zheng
    • 1
  • W. Chen
    • 2
  • Y. Lin
    • 3
  • F. Chen
    • 3
  • L. Zhang
    • 3
  • J. Ivanisenko
    • 4
  • Y. Zhou
    • 1
  • H. Hahn
    • 4
  • E. J. Lavernia
    • 1
  1. 1.University of CaliforniaIrvineUSA
  2. 2.South China University of TechnologyGuangzhouChina
  3. 3.Wuhan University of TechnologyWuhanChina
  4. 4.Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations