Skip to main content
Log in

The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe100−x Ni x )80Nb4Si2B14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in all alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe30Ni70)80Nb4Si2B14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr23C6-type structure and a likely composition of Fe21Nb2B6. Toroidal losses have been measured for (Fe70Ni30)80Nb4Si y B16−y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W1.0T, 400 Hz = 0.9 W/kg and W1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Waide and C.U. Brunner, Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems (2011).

  2. A.M. Leary, P.R. Ohodnicki, and M.E. McHenry, JOM 64, 772 (2012).

    Article  Google Scholar 

  3. J.M. Silveyra, P. Xu, V. Keylin, V. DeGeorge, A. Leary, and M.E. McHenry, J. Electron. Mater. 45, 219 (2016).

    Article  Google Scholar 

  4. J.M. Silveyra, A.M. Leary, V. DeGeorge, S. Simizu, and M.E. McHenry, J. Appl. Phys. 115, 17A319 (2014).

    Article  Google Scholar 

  5. R.G. Eggert, A.S. Carpenter, T.E. Graedel, D.A. Meyer, T. McNulty, B.M. Moudgil, M.M. Poulton, and L.J. Surges, Minerals, Critical Minerals, and the U.S. Economy (Washington, DC: The National Academies Press, 2008).

    Google Scholar 

  6. R. Jaffe, J. Price, G. Ceder, R. Eggert, T. Graedel, K. Gschneidner, M. Hitzman, F. Houle, A. Hurd, R. Kelley, A. King, D. Milliron, B. Skinner, and F. Slakey, Energy Critical Elements: Securing Materials for Emerging Technologies (2011).

  7. M.E. McHenry, M.A. Willard, and D.E. Laughlin, Prog. Mater Sci. 44, 291 (1999).

    Article  Google Scholar 

  8. V. Degeorge, S. Shen, P. Ohodnicki, M. Andio, and M.E. McHenry, J. Electron. Mater. 43, 96 (2014).

    Article  Google Scholar 

  9. M. Kurniawan, V. Keylin, and M.E. McHenry, J. Mater. Res. 30, 2231 (2015).

    Article  Google Scholar 

  10. C.P. Steinmetz, Am. Inst. Electr. Eng. Trans. 3, 3 (1892).

    Google Scholar 

  11. L. Johnson, E. Cornell, D. Bailey, and S. Hegyi, IEEE Trans. Power Appar. Syst. (PAS) 101, 2109 (1982).

    Article  Google Scholar 

  12. T. Fukao, A. Chiba, and M. Matsui, IEEE Trans. Ind. Appl. 25, 119 (1989).

    Article  Google Scholar 

  13. N. Ertugrul, R. Hasegawa, W.L. Soong, J. Gayler, S. Kloeden, and S. Kahourzade, IEEE Trans. Magn. 51, 1 (2015).

    Article  Google Scholar 

  14. C.W.T. McLyman, Transformer and Inductor Design Handbook, 3rd ed. (New York: Marcel Dekker Inc., 2004).

    Book  Google Scholar 

  15. G. Herzer, in NATO Sci. Ser. II Math. Phys. Chem., ed. by B. Idzikowski, P. Svec, and M. Miglierini (Kluwer Academic, Budmerice, Slovakia, 2003).

  16. M.E. McHenry and D.E. Laughlin, 19–Magnetic Properties of Metals and Alloys, 5th ed. (Amsterdam: Elsevier B.V., 2015).

    Google Scholar 

  17. V. DeGeorge, E. Zoghlin, V. Keylin, and M. McHenry, J. Appl. Phys. 117, 17A329 (2015).

    Article  Google Scholar 

  18. T.M. Heil, K.J. Wahl, A.C. Lewis, J.D. Mattison, and M.A. Willard, Appl. Phys. Lett. 90, 12508 (2007).

    Article  Google Scholar 

  19. S.J. Kernion, K.J. Miller, S. Shen, V. Keylin, J. Huth, and M.E. McHenry, IEEE Trans. Magn. 47, 3452 (2011).

    Article  Google Scholar 

  20. K.J. Miller, A. Leary, S.J. Kernion, A. Wise, D.E. Laughlin, M.E. McHenry, V. Keylin, and J. Huth, J. Appl. Phys. 107, 09A316 (2010).

    Article  Google Scholar 

  21. S. Shen, V. DeGeorge, P.R. Ohodnicki, S.J. Kernion, V. Keylin, J.F. Huth, and M.E. McHenry, J. Appl. Phys. 115, 17A335 (2014).

    Article  Google Scholar 

  22. A. Leary, V. Keylin, A. Devaraj, V. DeGeorge, P. Ohodnicki, and M.E. McHenry, J. Mater. Res. 23, 1 (2016).

    Google Scholar 

  23. H. Harada, M. Muller, and H. Warlimont, Springer Handb. Condens. Matter Mater. Data, ed. W. Martienssen and H. Warlimont (New York: Springer, 2005), pp. 755–815.

    Chapter  Google Scholar 

  24. P.R. Ohodnicki (Ph.D. thesis, Carnegie Mellon University, 2008).

  25. P.R. Ohodnicki, D.E. Laughlin, M.E. McHenry, V. Keylin, and J. Huth, J. Appl. Phys. 105, 07A322 (2009).

    Article  Google Scholar 

  26. P.R. Ohodnicki, J. Long, D.E. Laughlin, M.E. McHenry, V. Keylin, and J. Huth, J. Appl. Phys. 104, 113909 (2008).

    Article  Google Scholar 

  27. P.R. Ohodnicki, M.E. McHenry, and D.E. Laughlin, J. Appl. Phys. 101, 09N118 (2007).

    Article  Google Scholar 

  28. M. Daniil, P.R. Ohodnicki, M.E. McHenry, and M.A. Willard, Philos. Mag. 90, 1547 (2010).

    Article  Google Scholar 

  29. F.-M. Cornea, C. Codrean, D. Buzdugan, and V.-A. Şerban, Key Eng. Mater. 601, 50 (2014).

    Article  Google Scholar 

  30. X. Li, J. Chen, and K. Zhang, Mater. Des. 30, 2665 (2009).

    Article  Google Scholar 

  31. F. Mazaleyrat, Z. Gersci, and L.K. Varga, in NATO Adv. Res. Work. Prop. Appl. Nanocrystalline Alloy. from Amorph. Precurso, ed. by P. Švec, B. Idzikowski, and M. Miglierini (Springer, Berlin, 2006).

  32. P.R. Ohodnicki, N.C. Cates, D.E. Laughlin, M.E. McHenry, and M. Widom, Phys. Rev. B 78, 144414 (2008).

    Article  Google Scholar 

  33. J. Long, P.R. Ohodnicki, D.E. Laughlin, M.E. Mchenry, T. Ohkubo, and K. Hono, J. Appl. Phys. 101, 09N114 (2007).

    Article  Google Scholar 

  34. F. Landgraf and M. Emura, J. Magn. Magn. Mater. 242–245, 152 (2002).

    Article  Google Scholar 

  35. J.C. Bavay and J. Verdun, J. Mater. Eng. Perform. 2, 169 (1993).

    Article  Google Scholar 

  36. A. Hsiao, M.E. McHenry, D.E. Laughlin, M.J. Kramer, C. Ashe, and T. Ohkubo, IEEE Trans. Magn. 38, 3039 (2002).

    Article  Google Scholar 

  37. N. Aronhime, E. Zoghlin, V. Keylin, X. Jin, and M.E. McHenry, in Magn. Magentic Mater (New Orleans, 2016).

  38. K. Suzuki, R. Parsons, B. Zang, K. Onodera, H. Kishimoto, and A. Kato, Appl. Phys. Lett. 110, 12407 (2017).

    Article  Google Scholar 

  39. K. Suzuki, A. Makino, A. Inoue, and T. Masumoto, J. Appl. Phys. 74, 3316 (1993).

    Article  Google Scholar 

  40. C.-W. Chen, Magnetism and Metallurgy of Soft Magnetic Materials (Amsterdam: Dover Publications, 1986).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the DOE Solar Energy Technology Office and the Grid Modernization Laboratory Consortium through the SuNLaMP initiative under Agreement #DE-EE-00031004. MEM acknowledges support from the DOE AMO program through DOE/EERE—Office of Advanced Manufacturing Program Award Number: DE-EE0007867.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natan Aronhime.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aronhime, N., DeGeorge, V., Keylin, V. et al. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites. JOM 69, 2164–2170 (2017). https://doi.org/10.1007/s11837-017-2480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2480-x

Navigation