JOM

, Volume 69, Issue 11, pp 2164–2170 | Cite as

The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

  • Natan Aronhime
  • Vincent DeGeorge
  • Vladimir Keylin
  • Paul Ohodnicki
  • Michael E. McHenry
Article
  • 143 Downloads

Abstract

Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe100−x Ni x )80Nb4Si2B14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in all alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe30Ni70)80Nb4Si2B14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr23C6-type structure and a likely composition of Fe21Nb2B6. Toroidal losses have been measured for (Fe70Ni30)80Nb4Si y B16−y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W1.0T, 400 Hz = 0.9 W/kg and W1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.

Notes

Acknowledgements

The authors acknowledge support from the DOE Solar Energy Technology Office and the Grid Modernization Laboratory Consortium through the SuNLaMP initiative under Agreement #DE-EE-00031004. MEM acknowledges support from the DOE AMO program through DOE/EERE—Office of Advanced Manufacturing Program Award Number: DE-EE0007867.

References

  1. 1.
    P. Waide and C.U. Brunner, Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems (2011).Google Scholar
  2. 2.
    A.M. Leary, P.R. Ohodnicki, and M.E. McHenry, JOM 64, 772 (2012).CrossRefGoogle Scholar
  3. 3.
    J.M. Silveyra, P. Xu, V. Keylin, V. DeGeorge, A. Leary, and M.E. McHenry, J. Electron. Mater. 45, 219 (2016).CrossRefGoogle Scholar
  4. 4.
    J.M. Silveyra, A.M. Leary, V. DeGeorge, S. Simizu, and M.E. McHenry, J. Appl. Phys. 115, 17A319 (2014).CrossRefGoogle Scholar
  5. 5.
    R.G. Eggert, A.S. Carpenter, T.E. Graedel, D.A. Meyer, T. McNulty, B.M. Moudgil, M.M. Poulton, and L.J. Surges, Minerals, Critical Minerals, and the U.S. Economy (Washington, DC: The National Academies Press, 2008).Google Scholar
  6. 6.
    R. Jaffe, J. Price, G. Ceder, R. Eggert, T. Graedel, K. Gschneidner, M. Hitzman, F. Houle, A. Hurd, R. Kelley, A. King, D. Milliron, B. Skinner, and F. Slakey, Energy Critical Elements: Securing Materials for Emerging Technologies (2011).Google Scholar
  7. 7.
    M.E. McHenry, M.A. Willard, and D.E. Laughlin, Prog. Mater Sci. 44, 291 (1999).CrossRefGoogle Scholar
  8. 8.
    V. Degeorge, S. Shen, P. Ohodnicki, M. Andio, and M.E. McHenry, J. Electron. Mater. 43, 96 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Kurniawan, V. Keylin, and M.E. McHenry, J. Mater. Res. 30, 2231 (2015).CrossRefGoogle Scholar
  10. 10.
    C.P. Steinmetz, Am. Inst. Electr. Eng. Trans. 3, 3 (1892).Google Scholar
  11. 11.
    L. Johnson, E. Cornell, D. Bailey, and S. Hegyi, IEEE Trans. Power Appar. Syst. (PAS) 101, 2109 (1982).CrossRefGoogle Scholar
  12. 12.
    T. Fukao, A. Chiba, and M. Matsui, IEEE Trans. Ind. Appl. 25, 119 (1989).CrossRefGoogle Scholar
  13. 13.
    N. Ertugrul, R. Hasegawa, W.L. Soong, J. Gayler, S. Kloeden, and S. Kahourzade, IEEE Trans. Magn. 51, 1 (2015).CrossRefGoogle Scholar
  14. 14.
    C.W.T. McLyman, Transformer and Inductor Design Handbook, 3rd ed. (New York: Marcel Dekker Inc., 2004).CrossRefGoogle Scholar
  15. 15.
    G. Herzer, in NATO Sci. Ser. II Math. Phys. Chem., ed. by B. Idzikowski, P. Svec, and M. Miglierini (Kluwer Academic, Budmerice, Slovakia, 2003).Google Scholar
  16. 16.
    M.E. McHenry and D.E. Laughlin, 19–Magnetic Properties of Metals and Alloys, 5th ed. (Amsterdam: Elsevier B.V., 2015).Google Scholar
  17. 17.
    V. DeGeorge, E. Zoghlin, V. Keylin, and M. McHenry, J. Appl. Phys. 117, 17A329 (2015).CrossRefGoogle Scholar
  18. 18.
    T.M. Heil, K.J. Wahl, A.C. Lewis, J.D. Mattison, and M.A. Willard, Appl. Phys. Lett. 90, 12508 (2007).CrossRefGoogle Scholar
  19. 19.
    S.J. Kernion, K.J. Miller, S. Shen, V. Keylin, J. Huth, and M.E. McHenry, IEEE Trans. Magn. 47, 3452 (2011).CrossRefGoogle Scholar
  20. 20.
    K.J. Miller, A. Leary, S.J. Kernion, A. Wise, D.E. Laughlin, M.E. McHenry, V. Keylin, and J. Huth, J. Appl. Phys. 107, 09A316 (2010).CrossRefGoogle Scholar
  21. 21.
    S. Shen, V. DeGeorge, P.R. Ohodnicki, S.J. Kernion, V. Keylin, J.F. Huth, and M.E. McHenry, J. Appl. Phys. 115, 17A335 (2014).CrossRefGoogle Scholar
  22. 22.
    A. Leary, V. Keylin, A. Devaraj, V. DeGeorge, P. Ohodnicki, and M.E. McHenry, J. Mater. Res. 23, 1 (2016).Google Scholar
  23. 23.
    H. Harada, M. Muller, and H. Warlimont, Springer Handb. Condens. Matter Mater. Data, ed. W. Martienssen and H. Warlimont (New York: Springer, 2005), pp. 755–815.CrossRefGoogle Scholar
  24. 24.
    P.R. Ohodnicki (Ph.D. thesis, Carnegie Mellon University, 2008).Google Scholar
  25. 25.
    P.R. Ohodnicki, D.E. Laughlin, M.E. McHenry, V. Keylin, and J. Huth, J. Appl. Phys. 105, 07A322 (2009).CrossRefGoogle Scholar
  26. 26.
    P.R. Ohodnicki, J. Long, D.E. Laughlin, M.E. McHenry, V. Keylin, and J. Huth, J. Appl. Phys. 104, 113909 (2008).CrossRefGoogle Scholar
  27. 27.
    P.R. Ohodnicki, M.E. McHenry, and D.E. Laughlin, J. Appl. Phys. 101, 09N118 (2007).CrossRefGoogle Scholar
  28. 28.
    M. Daniil, P.R. Ohodnicki, M.E. McHenry, and M.A. Willard, Philos. Mag. 90, 1547 (2010).CrossRefGoogle Scholar
  29. 29.
    F.-M. Cornea, C. Codrean, D. Buzdugan, and V.-A. Şerban, Key Eng. Mater. 601, 50 (2014).CrossRefGoogle Scholar
  30. 30.
    X. Li, J. Chen, and K. Zhang, Mater. Des. 30, 2665 (2009).CrossRefGoogle Scholar
  31. 31.
    F. Mazaleyrat, Z. Gersci, and L.K. Varga, in NATO Adv. Res. Work. Prop. Appl. Nanocrystalline Alloy. from Amorph. Precurso, ed. by P. Švec, B. Idzikowski, and M. Miglierini (Springer, Berlin, 2006).Google Scholar
  32. 32.
    P.R. Ohodnicki, N.C. Cates, D.E. Laughlin, M.E. McHenry, and M. Widom, Phys. Rev. B 78, 144414 (2008).CrossRefGoogle Scholar
  33. 33.
    J. Long, P.R. Ohodnicki, D.E. Laughlin, M.E. Mchenry, T. Ohkubo, and K. Hono, J. Appl. Phys. 101, 09N114 (2007).CrossRefGoogle Scholar
  34. 34.
    F. Landgraf and M. Emura, J. Magn. Magn. Mater. 242–245, 152 (2002).CrossRefGoogle Scholar
  35. 35.
    J.C. Bavay and J. Verdun, J. Mater. Eng. Perform. 2, 169 (1993).CrossRefGoogle Scholar
  36. 36.
    A. Hsiao, M.E. McHenry, D.E. Laughlin, M.J. Kramer, C. Ashe, and T. Ohkubo, IEEE Trans. Magn. 38, 3039 (2002).CrossRefGoogle Scholar
  37. 37.
    N. Aronhime, E. Zoghlin, V. Keylin, X. Jin, and M.E. McHenry, in Magn. Magentic Mater (New Orleans, 2016).Google Scholar
  38. 38.
    K. Suzuki, R. Parsons, B. Zang, K. Onodera, H. Kishimoto, and A. Kato, Appl. Phys. Lett. 110, 12407 (2017).CrossRefGoogle Scholar
  39. 39.
    K. Suzuki, A. Makino, A. Inoue, and T. Masumoto, J. Appl. Phys. 74, 3316 (1993).CrossRefGoogle Scholar
  40. 40.
    C.-W. Chen, Magnetism and Metallurgy of Soft Magnetic Materials (Amsterdam: Dover Publications, 1986).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.NASA Glenn Research CenterClevelandUSA
  3. 3.Vantage Partners LLCBrook ParkUSA
  4. 4.National Energy Technology LaboratoryPittsburghUSA

Personalised recommendations