Skip to main content
Log in

Comparison of a Directionally Solidified TiAl Alloy by Φ15 mm Cylindrical and 29 × 6 mm Plate Y2O3 Molds

  • Published:
JOM Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

To begin a preliminary exploration on the effect of shape, the effect of a novel shaped 29 × 6 mm plate mold on the microstructure and mechanical properties of directionally solidified (DS) Ti-45Al-2Cr-2Nb was investigated. For comparison, Φ15 mm cylindrical molds with an equivalent cross-sectional area were used. Experimental results show that the typical microstructures of the DS region in all samples consist of regular well aligned α 2/γ lamellar structure, B2 phase and Y2O3 particles. Due to the lower strength of flow generated by the shape factor of the mold, the plate sample has coarser lamellae and more B2 phase, but fewer Y2O3 particles. Additionally, the room temperature (RT) fracture toughness and tensile properties of the plate sample are improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.S. Chan, JOM 49, 53 (1997).

    Article  Google Scholar 

  2. A.V. Kartavykh, E.A. Asnis, N.V. Piskun, I.I. Statkevich, and M.V. Gorshenkov, J. Alloys Compd. 643, S182 (2015).

    Article  Google Scholar 

  3. S.W. Kim, Y.S. Na, J.T. Yeom, S.E. Kim, and Y.S. Choi, Mater. Sci. Eng., A 589, 140 (2014).

    Article  Google Scholar 

  4. H. Inui, M.H. Oh, and A. Nakamura, Acta Mater. 40, 3095 (1992).

    Article  Google Scholar 

  5. J. Lapin and Z. Gabalcová, Intermetallics 19, 797 (2011).

    Article  Google Scholar 

  6. G. Chen, Y.B. Peng, G. Zheng, Z.X. Qi, M.Z. Wang, H.C. Yu, C.L. Dong, and C.T. Liu, Nat. Mater. 15, 876 (2016).

    Article  Google Scholar 

  7. M. Yamaguchi, D.R. Johnson, H.N. Lee, and H. Inui, Intermetallics 8, 511 (2000).

    Article  Google Scholar 

  8. X.F. Ding, J.P. Lin, L.Q. Zhang, H.L. Wang, G.J. Hao, and G.L. Chen, J. Alloys Compd. 506, 115 (2010).

    Article  Google Scholar 

  9. D.R. Johnson, H. Inui, S. Muto, Y. Omiya, and Y. Yamanaka, Acta Mater. 54, 1077 (2006).

    Article  Google Scholar 

  10. H. Saari, J. Beddoes, D.Y. Seo, and L. Zhao, Intermetallic 13, 937 (2005).

    Article  Google Scholar 

  11. J. Lapin, Z. Gabalcová, and T. Pelachová, Intermetallic 19, 396 (2011).

    Article  Google Scholar 

  12. Y.J. Du, J. Shen, Y.L. Xiong, Z.W. Liu, Q. Zhao, and H.Z. Fu, JOM 66, 1914 (2014).

    Article  Google Scholar 

  13. I.S. Jung, H.S. Jang, M.H. Oh, J.H. Lee, and D.M. Wee, Mater. Sci. Eng., A 329, 13 (2002).

    Article  Google Scholar 

  14. Z.X. Xiao, L.J. Zheng, J. Yan, L.L. Yang, and H. Zhang, Acta Metall. Sin. 46, 1223 (2010).

    Article  Google Scholar 

  15. M.C. Kim, M.H. Oh, J.H. Lee, H. Inui, M. Yamaguchi, and D.M. Wee, Mater. Sci. Eng., A 239, 570 (1997).

    Article  Google Scholar 

  16. H.S. Ding, Y.Z. Wang, R.R. Chen, J.J. Guo, and H.Z. Fu, Mater. Des. 86, 670 (2015).

    Article  Google Scholar 

  17. G.H. Liu, X.Z. Lin, Y.Q. Sun, R.R. Chen, J.J. Guo, and H.Z. Fu, Trans. Nonferrous Metals Soc. China 22, 1342 (2012).

    Article  Google Scholar 

  18. H.R. Zhang, X.X. Tang, C.G. Zhou, H. Zhang, and S.W. Zhang, J. Eur. Ceram. Soc. 33, 925 (2013).

    Article  Google Scholar 

  19. R.J. Cui, X.X. Tang, M. Gao, H. Zhang, and S.K. Gong, J. Mater. Process. Technol. 210, 1190 (2010).

    Article  Google Scholar 

  20. M. Gao, R.R. Cui, L.M. Ma, H.R. Zhang, X.X. Tang, and H. Zhang, J. Mater. Process. Technol. 211, 2004 (2011).

    Article  Google Scholar 

  21. R. Trivedi, H. Miyahara, P. Mazumder, E. Simsek, and S.N. Tewari, J. Cryst. Growth 222, 365 (2001).

    Article  Google Scholar 

  22. S.W. Kim, K.S. Kumar, M.H. Oh, and D.M. Wee, Intermetallic 15, 976 (2007).

    Article  Google Scholar 

  23. K. Maruyama, N. Yamada, and H. Sato, Mater. Sci. Eng., A 319, 360 (2001).

    Article  Google Scholar 

  24. Y.Y. Chen, H.Z. Niu, F.T. Kong, and S.L. Xiao, Intermetallic 19, 1405 (2011).

    Article  Google Scholar 

  25. X.F. Ding, J.P. Lin, L.Q. Zhang, X.P. Song, and G.L. Chen, Mater. Des. 32, 395 (2011).

    Article  Google Scholar 

  26. X.J. Xu, J.P. Lin, Y.L. Wang, J.F. Gao, Z. Lin, and G.L. Chen, J. Alloys Compd. 414, 131 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of this work by National Nature Science Foundation of China (Grant No. 51471062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsheng Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ding, H., Wang, Q. et al. Comparison of a Directionally Solidified TiAl Alloy by Φ15 mm Cylindrical and 29 × 6 mm Plate Y2O3 Molds. JOM 69, 1812–1817 (2017). https://doi.org/10.1007/s11837-017-2475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2475-7

Navigation