Advertisement

JOM

, Volume 69, Issue 11, pp 2084–2091 | Cite as

Unique Challenges for Modeling Defect Dynamics in Concentrated Solid-Solution Alloys

  • Shijun Zhao
  • William J. Weber
  • Yanwen Zhang
Article

Abstract

Recently developed concentrated solid solution alloys (CSAs) are shown to have improved performance under irradiation that depends strongly on the number of alloying elements, alloying species, and their concentrations. In contrast to conventional dilute alloys, CSAs are composed of multiple principal elements situated randomly in a simple crystalline lattice. As a result, the intrinsic disorder has a profound influence on energy dissipation pathways and defect evolution when these CSAs are subjected to energetic particle irradiation. Extraordinary irradiation resistance, including suppression of void formation by two orders of magnitude at an elevated temperature, has been achieved with increasing compositional complexity in CSAs. Unfortunately, the loss of translational invariance associated with the intrinsic chemical disorder poses great challenges to theoretical modeling at the electronic and atomic levels. Based on recent computer simulation results for a set of novel Ni-containing, face-centered cubic CSAs, we review theoretical modeling progress in handling disorder in CSAs and underscore the impact of disorder on defect dynamics. We emphasize in particular the unique challenges associated with the description of defect dynamics in CSAs.

Notes

Acknowledgement

This work was supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

References

  1. 1.
    M.-H. Tsai and J.-W. Yeh, Mater. Res. Lett. 2, 107 (2014).CrossRefGoogle Scholar
  2. 2.
    K. Jin, B.C. Sales, G.M. Stocks, G.D. Samolyuk, M. Daene, W.J. Weber, Y. Zhang, and H. Bei, Sci. Rep. 6, 20159 (2016).CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Béland, R.E. Stoller, G.D. Samolyuk, M. Caro, A. Caro, and W.J. Weber, Nat. Commun. 6, 8736 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, K. Jin, H. Xue, C. Lu, R.J. Olsen, L.K. Beland, M.W. Ullah, S. Zhao, H. Bei, D.S. Aidhy, G.D. Samolyuk, L. Wang, M. Caro, A. Caro, G.M. Stocks, B.C. Larson, I.M. Robertson, A.A. Correa, and W.J. Weber, J. Mater. Res. 31, 2363 (2016).CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, S. Zhao, W.J. Weber, K. Nordlund, F. Granbergc, and F. Djurabekova, Curr. Opin. Solid State Mater. Sci. (2017). doi: 10.1016/j.cossms.2017.02.002.
  6. 6.
    C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, M.-R. He, I.M. Robertson, W.J. Weber, and L. Wang, Nat. Commun. 7, 13564 (2016).CrossRefGoogle Scholar
  7. 7.
    F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang, Phys. Rev. Lett. 116, 135504 (2016).CrossRefGoogle Scholar
  8. 8.
    B.L. Gyorffy, Phys. Rev. B 5, 2382 (1972).CrossRefGoogle Scholar
  9. 9.
    A. Zunger, S.-H. Wei, L.G. Ferreira, and J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990).CrossRefGoogle Scholar
  10. 10.
    J.M. Sanchez, F. Ducastelle, and D. Gratias, Phys. A Stat. Mech. Its Appl. 128, 334 (1984).CrossRefGoogle Scholar
  11. 11.
    L. Delczeg, B. Johansson, and L. Vitos, Phys. Rev. B 85, 174101 (2012).CrossRefGoogle Scholar
  12. 12.
    E.K. Delczeg-Czirjak, L. Delczeg, L. Vitos, and O. Eriksson, Phys. Rev. B 92, 224107 (2015).CrossRefGoogle Scholar
  13. 13.
    J.B. Staunton, D.D. Johnson, and F.J. Pinski, Phys. Rev. B 50, 1450 (1994).CrossRefGoogle Scholar
  14. 14.
    J.B. Piochaud, T.P.C. Klaver, G. Adjanor, P. Olsson, C. Domain, and C.S. Becquart, Phys. Rev. B 89, 24101 (2014).CrossRefGoogle Scholar
  15. 15.
    X. Zhang and M.H.F. Sluiter, Phys. Rev. B 91, 174107 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Van Der Ven and G. Ceder, Phys. Rev. B 71, 54102 (2005).Google Scholar
  17. 17.
    M. Muzyk, D. Nguyen-Manh, K.J. Kurzydłowski, N.L. Baluc, and S.L. Dudarev, Phys. Rev. B 84, 104115 (2011). CrossRefGoogle Scholar
  18. 18.
    E. Del Rio, J.M. Sampedro, H. Dogo, M.J.M.J. Caturla, M. Caro, A. Caro, and J.M. Perlado, J. Nucl. Mater. 408, 18 (2011).CrossRefGoogle Scholar
  19. 19.
    S.C. Middleburgh, D.M. King, G.R. Lumpkin, M. Cortie, and L. Edwards, J. Alloys Compd. 599, 179 (2014).CrossRefGoogle Scholar
  20. 20.
    S. Zhao, G.M. Stocks, and Y. Zhang, Phys. Chem. Chem. Phys. 18, 24043 (2016).CrossRefGoogle Scholar
  21. 21.
    J.S. Wróbel, D. Nguyen-Manh, S.L. Dudarev, and K.J. Kurzydłowski, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 393, 126 (2017).CrossRefGoogle Scholar
  22. 22.
    A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer, Phys. Rev. X 4, 11018 (2014).Google Scholar
  23. 23.
    A. Metsue, A. Oudriss, J. Bouhattate, and X. Feaugas, J. Chem. Phys. 140, 104705 (2014).CrossRefGoogle Scholar
  24. 24.
    A.V. Ruban, Phys. Rev. B 93, 134115 (2016).CrossRefGoogle Scholar
  25. 25.
    H.B. Luo, Q.M. Hu, J. Du, A.R. Yan, and J.P. Liu. arXiv preprint https://arxiv.org/abs/1702.03104 (2017).
  26. 26.
    M.S. Lucas, L. Mauger, J.A. Muñoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, and Z. Turgut, J. Appl. Phys. 109, 07E307 (2011).CrossRefGoogle Scholar
  27. 27.
    F.J. Pinski, J. Staunton, B.L. Gyorffy, D.D. Johnson, and G.M. Stocks, Phys. Rev. Lett. 56, 2096 (1986).CrossRefGoogle Scholar
  28. 28.
    G. Henkelman, B.P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).CrossRefGoogle Scholar
  29. 29.
    J.D. Tucker, T.R. Allen, and D. Morgan, 13th Environmental Degradation of Materials in Nuclear Power System (2007).Google Scholar
  30. 30.
    Y.N. Osetsky, L.K. Béland, and R.E. Stoller, Acta Mater. 115, 364 (2016).CrossRefGoogle Scholar
  31. 31.
    L. Barnard and D. Morgan, J. Nucl. Mater. 449, 225 (2014).CrossRefGoogle Scholar
  32. 32.
    J.D. Tucker, R. Najafabadi, T.R. Allen, and D. Morgan, J. Nucl. Mater. 405, 216 (2010).CrossRefGoogle Scholar
  33. 33.
    S. Zhao, Y. Osetsky, and Y. Zhang, Acta Mater. 128, 391 (2017).CrossRefGoogle Scholar
  34. 34.
    N. Castin and L. Malerba, J. Chem. Phys. 132, 74507 (2010).CrossRefGoogle Scholar
  35. 35.
    G. Bonny, N. Castin, and D. Terentyev, Model. Simul. Mater. Sci. Eng. 21, 85004 (2013).CrossRefGoogle Scholar
  36. 36.
    D. Terentyev, N. Castin, and C.J. Ortiz, J. Phys. Condens. Matter 24, 475404 (2012).CrossRefGoogle Scholar
  37. 37.
    A.J.E. Foreman, C.A. English, and W.J. Phythian, Philos. Mag. A 66, 655 (1992).CrossRefGoogle Scholar
  38. 38.
    D. Bacon, Y. Osetsky, R. Stoller, and R. Voskoboinikov, J. Nucl. Mater. 323, 152 (2003).CrossRefGoogle Scholar
  39. 39.
    K. Nordlund, J. Wallenius, and L. Malerba, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 246, 322 (2006).CrossRefGoogle Scholar
  40. 40.
    C. Dimitrov, B. Sitaud, and O. Dimitrov, J. Nucl. Mater. 208, 53 (1994).CrossRefGoogle Scholar
  41. 41.
    F. Gao and D.J. Bacon, Philos. Mag. A 67, 289 (1993).CrossRefGoogle Scholar
  42. 42.
    B. Liu, F. Yuan, K. Jin, Y. Zhang, and W.J. Weber, J. Phys. Condens. Matter 27, 435006 (2015).CrossRefGoogle Scholar
  43. 43.
    L.K. Béland, C. Lu, Y.N. Osetskiy, G.D. Samolyuk, A. Caro, L. Wang, and R.E. Stoller, J. Appl. Phys. 119, 85901 (2016).CrossRefGoogle Scholar
  44. 44.
    M.W. Ullah, D.S. Aidhy, Y. Zhang, and W.J. Weber, Acta Mater. 109, 17 (2016).CrossRefGoogle Scholar
  45. 45.
    L.K. Béland, Y.N. Osetsky, and R.E. Stoller, Acta Mater. 116, 136 (2016).CrossRefGoogle Scholar
  46. 46.
    E. Levo, F. Granberg, C. Fridlund, K. Nordlund, and F. Djurabekova, J. Nucl. Mater. 490, 323 (2017).CrossRefGoogle Scholar
  47. 47.
    E. Zarkadoula, G. Samolyuk, H. Xue, H. Bei, and W.J. Weber, Scr. Mater. 124, 6 (2016).CrossRefGoogle Scholar
  48. 48.
    D.S. Aidhy, C. Lu, K. Jin, H. Bei, Y. Zhang, L. Wang, and W.J. Weber, Acta Mater. 99, 69 (2015).CrossRefGoogle Scholar
  49. 49.
    S. Zhao, G. Velisa, H. Xue, H. Bei, W.J. Weber, and Y. Zhang, Acta Mater. 125, 231 (2017).CrossRefGoogle Scholar
  50. 50.
    S. Zhao, Y.N. Osetsky, and Y. Zhang, J. Alloys Compd. 701, 1003 (2017).CrossRefGoogle Scholar
  51. 51.
    S.I. Rao, C. Varvenne, C. Woodward, T.A. Parthasarathy, D. Miracle, O.N. Senkov, and W.A. Curtin, Acta Mater. 125, 311 (2017).CrossRefGoogle Scholar
  52. 52.
    L.K. Béland, P. Brommer, F. El-Mellouhi, J.-F. Joly, and N. Mousseau, Phys. Rev. E 84, 46704 (2011).CrossRefGoogle Scholar
  53. 53.
    H. Xu, Y.N. Osetsky, and R.E. Stoller, Phys. Rev. B 84, 132103 (2011).CrossRefGoogle Scholar
  54. 54.
    L.K. Béland, Y.N. Osetsky, R.E. Stoller, and H. Xu, J. Alloys Compd. 640, 219 (2015).CrossRefGoogle Scholar
  55. 55.
    G. Odette, B. Wirth, D. Bacon, and N. Ghoniem, MRS Bull. 26, 176 (2001).CrossRefGoogle Scholar
  56. 56.
    P.R. Monasterio, B.D. Wirth, and G.R. Odette, J. Nucl. Mater. 361, 127 (2007).CrossRefGoogle Scholar
  57. 57.
    G.S. Was, J.P. Wharry, B. Frisbie, B.D. Wirth, D. Morgan, J.D. Tucker, and T.R. Allen, J. Nucl. Mater. 411, 41 (2011).CrossRefGoogle Scholar
  58. 58.
    L. Malerba, A. Caro, and J. Wallenius, J. Nucl. Mater. 382, 112 (2008).CrossRefGoogle Scholar
  59. 59.
    D. Terentyev, G. Bonny, N. Castin, C. Domain, L. Malerba, P. Olsson, V. Moloddtsov, and R.C. Pasianot, J. Nucl. Mater. 409, 167 (2011).CrossRefGoogle Scholar
  60. 60.
    G. Bonny, N. Castin, J. Bullens, A. Bakaev, T.C.P. Klaver, and D. Terentyev, J. Phys. Condens. Matter 25, 315401 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations