, Volume 69, Issue 11, pp 2264–2271 | Cite as

Effect of RF Power on the Structural and Optical Properties of Zinc Sulfide Films

  • S. R. Chalana
  • S. Sankararaman
  • Radhakrishna Prabhu
  • V. P. Mahadevan Pillai


Zinc sulfide (ZnS) films were prepared via a radio frequency (RF) magnetron sputtering technique using different RF powers (100, 120, 150, and 180 W), and the effects of the RF power on the structural and optical properties of the films were studied using x-ray diffraction, micro-Raman spectroscopy, atomic force microscopy, ultraviolet–visible spectroscopy, spectroscopic ellipsometry, and laser photoluminescence spectroscopy. It was found that the RF power has an important impact on the predominant phase formation and crystallinity of the ZnS films. The film thickness, refractive index, and film to bulk relative density increase systematically with an increase in the RF power. Among the various RF power values investigated, 150 W was optimal for the growth of highly crystalline ZnS films with a predominance of the cubic phase and enhanced photoluminescence emissions.

Supplementary material

11837_2017_2459_MOESM1_ESM.pdf (226 kb)
Supplementary material 1 (PDF 227 kb)


  1. 1.
    M. Kuppayee, G.K. Vanathi Nachiyar, and V. Ramasamy, Appl. Surf. Sci. 257, 6779 (2011).CrossRefGoogle Scholar
  2. 2.
    S. Lee, D. Song, D. Kim, J. Lee, S. Kim, I.Y. Park, and Y.D. Choi, Mater. Lett. 58, 342 (2004).CrossRefGoogle Scholar
  3. 3.
    R.D. Yang, S. Tripathy, F.E.H. Tay, L.M. Gan, and S.J. Chua, J. Vac. Sci. Technol. B 21, 984 (2003).CrossRefGoogle Scholar
  4. 4.
    F.A. La Porta, J. Andres, M.S. Li, J.R. Sambrano, J.A. Varela, and E. Longo, Phys. Chem. Chem. Phys. 16, 20127 (2014).CrossRefGoogle Scholar
  5. 5.
    N.S.N. Jothi and P. Sagayaraj, Arch. Appl. Sci. Res. 4, 1079 (2012).Google Scholar
  6. 6.
    P. Hu, G. Gong, F. Zhan, Y. Zhang, R. Li, and Y. Cao, Dalton Trans. 45, 2409 (2016).CrossRefGoogle Scholar
  7. 7.
    S.R. Chalana, V. Ganesan, and V.P. Mahadevan Pillai, AIP Adv. 5, 107207 (2015).CrossRefGoogle Scholar
  8. 8.
    S.R. Chalana, R. Jolly Bose, R. Reshmi Krishnan, V.S. Kavitha, R. Sreeja Sreedharan, and V.P. Mahadevan Pillai, J. Phys. Chem. Solids 95, 24 (2016).CrossRefGoogle Scholar
  9. 9.
    V.L. Gayou, B.S. Hernandez, M.E. Constantino, E.R. Andres, T. Diaz, R.D. Macuil, and M.R. Lopez, Vacuum 84, 1191 (2010).CrossRefGoogle Scholar
  10. 10.
    P.K. Ghosh, S. Jana, S. Nandy, and K.K. Chattopadhyay, Mater. Res. Bull. 42, 505 (2007).CrossRefGoogle Scholar
  11. 11.
    S.P. Patel, J.C. Pivin, V.V.S. Kumar, A. Tripathi, D. Kanjilal, and L. Kumar, Vacuum 85, 307 (2010).CrossRefGoogle Scholar
  12. 12.
    J. Fang, P.H. Holloway, J.E. Yu, K.S. Jones, B. Pathangey, E. Brettschneider, and T.J. Anderson, Appl. Surf. Sci. 70–71, 701 (1993).CrossRefGoogle Scholar
  13. 13.
    K. Uchino, K. Ueyama, M. Yamamoto, H. Kariya, H. Miyata, H. Misasa, M. Kitagawa, and H. Kobayashi, J. Appl. Phys. 87, 4249 (2000).CrossRefGoogle Scholar
  14. 14.
    C.T. Hsu, Thin Solid Films 335, 284 (1998).CrossRefGoogle Scholar
  15. 15.
    W. Tang and D.C. Cameron, Thin Solid Films 280, 221 (1996).CrossRefGoogle Scholar
  16. 16.
    K.M. Yeung, W.S. Tsang, C.L. Mark, and H. Wong, J. Appl. Phys. 92, 3636 (2002).CrossRefGoogle Scholar
  17. 17.
    D.H. Hwang, J.H. Ahn, K.N. Hui, K.S. Hui, and Y.G. Son, Nanoscale Res. Lett. 7, 26 (2012).CrossRefGoogle Scholar
  18. 18.
    P. Chelvanathan, Y. Yusoff, F. Haque, M. Akhtaruzzaman, M.M. Alam, Z.A. Alothman, M.J. Rashid, K. Sopian, and N. Amin, Appl. Surf. Sci. 334, 138 (2015).CrossRefGoogle Scholar
  19. 19.
    F. Haque, K.S. Rahman, M.A. Islam, M.J. Rashid, M. Akharuzzaman, M.M. Alam, Z.A. Alothman, K. Sopian, and N. Amin, Chalcogenide Lett. 11, 189 (2014).Google Scholar
  20. 20.
    R. Mendil, Z.B. Ayadi, J.B. Belgacem, and K. Djessas, J. Mater. Sci. Mater. Electron. 27, 444 (2016).CrossRefGoogle Scholar
  21. 21.
    C. Mukherjee, K. Rajiv, P. Gupta, A.K. Sinha, and L. Abhinandan, AIP Conf. Proc. 1451, 230 (2012).CrossRefGoogle Scholar
  22. 22.
    H. Xu, L. Wu, W. Wang, L. Zhang, J. Zhang, W. Li, and L. Feng, Int. J. Photoenergy 2014, 1 (2014).Google Scholar
  23. 23.
    B.R. Critchley and P.R.C. Stevens, J. Phys. D Appl. Phys. 11, 491 (1978).CrossRefGoogle Scholar
  24. 24.
    J.S. McCloy (Ph.D. Dissertation, The University of Arizona, 2008).Google Scholar
  25. 25.
    K.T. Hillie, C. Curren, and H.C. Swart, Appl. Surf. Sci. 177, 73 (2001).CrossRefGoogle Scholar
  26. 26.
    J.K. Kim, S.J. Yun, J.M. Lee, and J.W. Lim, Curr. Appl. Phys. 10, S451 (2010).CrossRefGoogle Scholar
  27. 27.
    Y. Zheng, Q. Liang, B. Li, G. Zeng, W. Wang, J. Zhang, W. Li, and L. Feng, Adv. Mater. Res. 1058, 240 (2014).CrossRefGoogle Scholar
  28. 28.
    R. Zhang, B. Wang, and L. Wei, Mater. Chem. Phys. 112, 557 (2008).CrossRefGoogle Scholar
  29. 29.
    Z. Zhang, C. Bao, S. Ma, L. Zhang, and S. Hou, J. Aust. Ceram. Soc. 48, 214 (2012).Google Scholar
  30. 30.
    T. Kryshtab, V.S. Khomchenko, J.A. Andraca-Adame, V.E. Rodionov, V.B. Khachatryan, and Y.A. Tzyrkunov, Superlattices Microstruct. 40, 651 (2006).CrossRefGoogle Scholar
  31. 31.
    V. Miikkulainen, M. Leskela, M. Ritala, and R.L. Puurunen, J. Appl. Phys. 113, 021301 (2013).CrossRefGoogle Scholar
  32. 32.
    Y.Y. Luo, G.T. Duan, and G.H. Li, Appl. Phys. Lett. 90, 201911 (2007).CrossRefGoogle Scholar
  33. 33.
    A.G. Milekhin, N.A. Yeryukov, L.L. Sveshnikova, T.A. Duda, C. Himcinschi, E.I. Zenkevich, and D.R.T. Zahn, Appl. Phys. A 107, 275 (2012).CrossRefGoogle Scholar
  34. 34.
    M. Scocioreanu, M. Baibarac, I. Baltog, I. Pasuk, and T. Velula, J. Solid State Chem. 186, 217 (2012).CrossRefGoogle Scholar
  35. 35.
    M. Lin, T. Sudhiranjan, C. Boothroyd, and K.P. Loh, Chem. Phys. Lett. 400, 175 (2004).CrossRefGoogle Scholar
  36. 36.
    Q. Xiong, J. Wang, O. Reese, L.C. Lew Yan Voon, and P.C. Eklund, Nano Lett. 4, 19 (2004).CrossRefGoogle Scholar
  37. 37.
    Y.C. Cheng, C.Q. Jin, F. Gao, X.L. Wu, W. Zhong, S.H. Li, and P.K. Chu, J. Appl. Phys. 106, 123505 (2009).CrossRefGoogle Scholar
  38. 38.
    N. Srinatha, Y.S. No, V.B. Kamble, S. Chakravarty, N. Suriya Murthy, B. Angadi, A.M. Umarji, and W.K. Cho, RSC Adv. 6, 9779 (2016).CrossRefGoogle Scholar
  39. 39.
    A. Zolanvari, R. Norouzi, and H. Sadeghi, J. Mater. Sci. Mater. Electron. 26, 4085 (2015).CrossRefGoogle Scholar
  40. 40.
    A. Gadallah and M.M. El-Nahass, Adv. Condens. Matter Phys. 2013, 1 (2013).Google Scholar
  41. 41.
    P. Prathap, N. Revathi, Y.P.V. Subbaiah, and K.T.R. Reddy, J. Phys. Condens. Matter 20, 1 (2008).Google Scholar
  42. 42.
    M. Vargas, E.J. Rubio, A. Gutierrez, and C.V. Ramana, J. Appl. Phys. 115, 1 (2014).Google Scholar
  43. 43.
    M.D. Himel, J.A. Ruffner, and U.J. Gibson, Appl. Opt. 27, 2810 (1988).CrossRefGoogle Scholar
  44. 44.
    I. Ahemen, O. Meludu, and E. Odoh, BJAST 3, 1228 (2013).CrossRefGoogle Scholar
  45. 45.
    W. Chen, J.B. Bovin, S. Wang, A.G. Joly, Y. Wang, and P.M.A. Sherwood, J. Nanosci. Nanotech. 5, 1309 (2005).CrossRefGoogle Scholar
  46. 46.
    S.R. Chalana, R. Vinodkumar, I. Navas, V. Ganesan, and V.P. Mahadevan Pillai, J. Lumin. 132, 944 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • S. R. Chalana
    • 1
  • S. Sankararaman
    • 1
  • Radhakrishna Prabhu
    • 2
  • V. P. Mahadevan Pillai
    • 1
  1. 1.Department of OptoelectronicsUniversity of KeralaKariavattom, ThiruvananthapuramIndia
  2. 2.School of EngineeringRobert Gordon UniversityAberdeenUK

Personalised recommendations