Skip to main content
Log in

Synthesis and Highly Photocatalytic Properties of Cu/Fe3O4 Nanospheres and Nanoparticles

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Cu/Fe3O4 nanospheres and nanoparticles were synthesized by using a hydrothermal procedure. The as-prepared samples were characterized by x-ray diffraction, transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy, respectively. The TEM images showed that the morphologies of Cu/Fe3O4 composites could be tuned by adding different amounts of urea. The resultant Cu/Fe3O4 composites could be nanospheres with a mean size of 90 nm with the addition of 15 mmol of urea but nanoparticles with a mean size of about 15 nm by adding 30 mmol of urea. The possible formation mechanism of Cu/Fe3O4 nanospheres and nanoparticles were explained reasonably. The photocatalytic performances of Cu/Fe3O4 composites for degrading methyl blue under irradiation of visible light were investigated. The results demonstrated that Cu/Fe3O4 nanospheres exhibited higher photocatalytic activity than did nanoparticles as they had the same compositions. Additionally, the Cu/Fe3O4 composites with a high Cu content could exhibit higher photocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Watanabe, M. Yoneda, A. Morohashi, Y. Hori, D. Okamoto, A. Sato, D. Kurioka, T. Nittami, Y. Hirokawa, T. Shiraishi, K. Kawai, H. Kasai, and Y. Totsuka, Int. J. Mol. Sci. 14, 15546 (2013).

    Article  Google Scholar 

  2. S. Lunge, S. Singh, and A. Sinha, J. Magn. Magn. Mater. 356, 21 (2014).

    Article  Google Scholar 

  3. Y. Li, C. Qin, C. Chen, Y. Fu, M. Ma, and Q. Xie, Sensor Actuators B Chem. 168, 46 (2012).

    Article  Google Scholar 

  4. Q. Meng, Z. Xia, X. Shu, X. Lu, J. Ji, and Y. Xiao, J. Comput. Theor. Nanosci. 10, 2136 (2013).

    Article  Google Scholar 

  5. X. Liang, H. Xu, J. Chen, J. Sun, Y. Yang, and X. Liu, Glass Phys. Chem 37, 330 (2011).

    Article  Google Scholar 

  6. M.P. Calatayud, B. Sanz, V. Raffa, C. Riggio, M.R. Ibarra, and G.F. Goya, Biomaterials 35, 6389 (2014).

    Article  Google Scholar 

  7. S. Priyanka, R. Suman, C.B. Kanhu, K. Chandan, G.S. Hemant, and A.H. Puthusserickal, New J. Chem. 38, 5500 (2014).

    Article  Google Scholar 

  8. J. Ji, P. Zeng, S. Ji, W. Wang, H. Liu, and Y. Li, Catal. Today 158, 305 (2010).

    Article  Google Scholar 

  9. S. Kameoka and A.P. Tsai, J. Mater. Chem. 20, 7348 (2010).

    Article  Google Scholar 

  10. Y. Lee, M.A. Garcia, A.F. Natalie, and S. Sun, Angew. Chem. Int. Ed. 49, 1271 (2010).

    Article  Google Scholar 

  11. W. Wang, F. Wang, Y. Kang, and A. Wang, RSC Adv. 3, 11515 (2013).

    Article  Google Scholar 

  12. Y.R. Yao, W.Z. Huang, H. Zhou, X. Cui, Y.F. Zheng, and X.C. Song, J. Nanopart. Res. 16, 2742 (2014).

    Article  Google Scholar 

  13. M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, and Y. Wu, J. Phys. Chem. B 110, 20211 (2006).

    Article  Google Scholar 

  14. G. Shan, Y. Fu, X. Chu, C. Chang, and L. Zhu, J. Colloid Interfaces Sci. 444, 123 (2015).

    Article  Google Scholar 

  15. X.L. Dong, X.Y. Mou, H.C. Ma, X.X. Zhang, X.F. Zhang, W.J. Sun, C. Ma, and M. Xue, J. Sol. Gel. Sci. Technol. 66, 231 (2013).

    Article  Google Scholar 

  16. W. Zhao, Y. Jin, C.H. Gao, W. Gu, Z.M. Jin, and Y.L. Lei, Mater. Chem. Phys. 143, 952 (2014).

    Article  Google Scholar 

  17. U.S. Chen, Y.L. Chueh, S.H. Lai, L.J. Chou, and H.C. Shih, J. Vac. Sci. Technol., B 24, 139 (2006).

    Article  Google Scholar 

  18. R. Li, Y. Jia, N. Bu, J. Wu, and Q. Zhen, J. Alloys Compd. 643, 88 (2015).

    Article  Google Scholar 

  19. R. Vinu and G. Madras, Environ. Sci. Technol. 43, 473 (2009).

    Article  Google Scholar 

  20. C. Tang, E. Liu, J. Wan, X. Hu, and J. Fan, Appl. Catal. B Environ. 181, 707 (2016).

    Article  Google Scholar 

  21. U.S. Chen, Y.L. Chueh, S.H. Lai, L.J. Chou, and H.C. Shih, J. Vac. Sci. Technol. B 24, 139 (2006).

    Article  Google Scholar 

  22. D.H. Zhang, Z.Q. Liu, S. Han, C. Li, B. Lei, M.P. Stewart, J.M. Tour, and C.W. Zhou, Nano Lett. 4, 2151 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the University Nature Science Research Project of Anhui Province, China (Grant No. KJ2015A208), and by the Nature Science Fund of Anhui Province, China (Grant No. 1608085MB33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Tian, D. & Zhu, Q. Synthesis and Highly Photocatalytic Properties of Cu/Fe3O4 Nanospheres and Nanoparticles. JOM 69, 1701–1705 (2017). https://doi.org/10.1007/s11837-017-2438-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2438-z

Navigation