JOM

, Volume 69, Issue 11, pp 2150–2155 | Cite as

Amorphous Metallic Alloys: Pathways for Enhanced Wear and Corrosion Resistance

  • Ayyagari Aditya
  • H. Felix Wu
  • Harpreet Arora
  • Sundeep Mukherjee
Article

Abstract

Amorphous metallic alloys are widely used in bulk form and as coatings for their desirable corrosion and wear behavior. Nevertheless, the effects of heat treatment and thermal cycling on these surface properties are not well understood. In this study, the corrosion and wear behavior of two Zr-based bulk metallic glasses were evaluated in as-cast and thermally relaxed states. Significant improvement in wear rate, friction coefficient, and corrosion penetration rate was seen for both alloys after thermal relaxation. A fully amorphous structure was retained with thermal relaxation below the glass transition. There was an increase in surface hardness and elastic modulus for both alloys after relaxation. The improvement in surface properties was explained based on annihilation of free volume.

Supplementary material

11837_2017_2384_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1896 kb)

References

  1. 1.
    L. Tian, Y. Cheng, Z. Shan, J. Li, C. Wang, X. Han, J. Sun, and E. Ma, Nat. Commun. 3, 609 (2012).CrossRefGoogle Scholar
  2. 2.
    U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay, Acta Mater. 53, 705 (2005).CrossRefGoogle Scholar
  3. 3.
    J. Wang, R. Li, N. Hua, L. Huang, and T. Zhang, Scr. Mater. 65, 536 (2011).CrossRefGoogle Scholar
  4. 4.
    J.R. Scully, A. Gebert, and J.H. Payer, J. Mater. Res. 22, 302 (2007).CrossRefGoogle Scholar
  5. 5.
    T. Xu, S. Pang, H. Li, and T. Zhang, J. Non Cryst. Solids 410, 20 (2015).CrossRefGoogle Scholar
  6. 6.
    R. Babilas, K. Cesarz-Andraczke, D. Babilas, and W. Simka, J. Mater. Eng. Perform. 24, 167 (2015).CrossRefGoogle Scholar
  7. 7.
    A.L. Greer and W. Myung, MRS Proc. 644, L10 (2000).CrossRefGoogle Scholar
  8. 8.
    S.S. Joshi, S. Katakam, H. Singh Arora, S. Mukherjee, and N.B. Dahotre, Crit. Rev. Solid State Mater. Sci. 41, 1 (2016).CrossRefGoogle Scholar
  9. 9.
    P. Murali and U. Ramamurty, Acta Mater. 53, 1467 (2005).CrossRefGoogle Scholar
  10. 10.
    S. Ketov, Y. Sun, S. Nachum, Z. Lu, A. Checchi, A. Beraldin, H. Bai, W. Wang, D. Louzguine-Luzgin, and M. Carpenter, Nature 524, 200 (2015).CrossRefGoogle Scholar
  11. 11.
    A. Slipenyuk and J. Eckert, Scr. Mater. 50, 39 (2004).CrossRefGoogle Scholar
  12. 12.
    S. Mukherjee, J. Schroers, Z. Zhou, W. Johnson, and W. Rhim, Acta Mater. 52, 3689 (2004).CrossRefGoogle Scholar
  13. 13.
    C. Nagel, K. Rätzke, E. Schmidtke, J. Wolff, U. Geyer, and F. Faupel, Phys. Rev. B 57, 10224 (1998).CrossRefGoogle Scholar
  14. 14.
    W. Fu, Y. Sun, and W. Zhang, Adv. Mater. Sci. Eng. 826758, 2013 (2013).Google Scholar
  15. 15.
    S. Mridha, D.L. Jaeger, H.S. Arora, R. Banerjee, and S. Mukherjee, Mater. Lett. 158, 99 (2015).CrossRefGoogle Scholar
  16. 16.
    T. Akagak and D. Rigney, Wear 149, 353 (1991).CrossRefGoogle Scholar
  17. 17.
    Z. Parlar, M. Bakkal, and A.J. Shih, Intermetallics 16, 34 (2008).CrossRefGoogle Scholar
  18. 18.
    A. Ayyagari, T.W. Scharf, and S. Mukherjee, Wear 350, 56 (2016).CrossRefGoogle Scholar
  19. 19.
    W. Dmowski, C. Fan, M. Morrison, P. Liaw, and T. Egami, Mater. Sci. Eng. A 471, 125 (2007).CrossRefGoogle Scholar
  20. 20.
    X. Wu, H. Ma, S. Chen, Z. Xu, and A. Sui, J. Electrochem. Soc. 146, 1847 (1999).CrossRefGoogle Scholar
  21. 21.
    B. Green, H. Meyer, R. Benson, Y. Yokoyama, P. Liaw, and C. Liu, Corros. Sci. 50, 1825 (2008).CrossRefGoogle Scholar
  22. 22.
    B.X. Huang, K. Wang, J.S. Church, and Y. Li, Electrochim. Acta 44, 2571 (1999).CrossRefGoogle Scholar
  23. 23.
    N. Homazava, A. Shkabko, D. Logvinovich, U. Krähenbühl, and A. Ulrich, Intermetallics 16, 1066 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Ayyagari Aditya
    • 1
  • H. Felix Wu
    • 2
  • Harpreet Arora
    • 3
  • Sundeep Mukherjee
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of North TexasDentonUSA
  2. 2.Vehicle Technologies Office, U.S. Department of EnergyWashingtonUSA
  3. 3.Department of Mechanical Engineering, School of EngineeringShiv Nadar UniversityGautam Buddha NagarIndia

Personalised recommendations