, Volume 69, Issue 11, pp 2078–2083 | Cite as

Effect of Heat Treatment on Borides Precipitation and Mechanical Properties of CoCrFeNiAl1.8Cu0.7B0.3Si0.1 High-Entropy Alloy Prepared by Arc-Melting and Laser-Cladding

  • H. ZhangEmail author
  • H. Tang
  • Y. Z. HeEmail author
  • J. L. Zhang
  • W. H. Li
  • S. Guo


Effects of heat treatment on borides precipitation and mechanical properties of arc-melted and laser-cladded CoCrNiFeAl1.8Cu0.7B0.3Si0.1 high-entropy alloys were comparatively studied. The arc-melted alloy contains lots of long strip borides distributed in the body-centered cubic phase, with a hardness about 643 HV0.5. Laser-cladding can effectively inhibit the boride precipitation and the laser-cladded alloy is mainly composed of a simple bcc solid solution, with a high hardness about 769 HV0.5, indicating the strengthening effect by interstitial boron atoms is greater than the strengthening by borides precipitation. Heat treatments between 800°C and 1200°C can simultaneously improve the hardness and fracture toughness of arc-melted alloys, owing to the boride spheroidization, dissolution, re-precipitation, and hence the increased boron solubility and nano-precipitation in the bcc solid solution. By contrast, the hardness of laser-cladded alloys reduce after heat treatments in the same temperature range, due to the decreased boron solubility in the matrix.



The authors are grateful for the financial support from the National Natural Science Foundation of China (NSFC) under Grant No. 51271001 and Joint Fund of Iron and Steel Research by NSFC under Grant No. U1560105, the University Natural Science Research Project of Anhui Province of China under Grant No. KJ2014A029, and the Tribology Science Fund of State Key Laboratory of Tribology under Grant No. SKLTKF14B02.


  1. 1.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater Sci. 61, 1 (2014).CrossRefGoogle Scholar
  2. 2.
    H. Zhang, W.F. Wu, Y.Z. He, M.X. Li, and S. Guo, Appl. Surf. Sci. 363, 543 (2016).CrossRefGoogle Scholar
  3. 3.
    N. Yu, N.D. Yurchenko, D.G. Stepanov, M.A. Shaysultanov, G.A. Tikhonovsky, and S. Salishchev, Mater. Charact. 121, 125 (2016).CrossRefGoogle Scholar
  4. 4.
    M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Acta Mater. 59, 6308 (2011).CrossRefGoogle Scholar
  5. 5.
    Z.M. Li, C.C. Tasan, H. Springer, B. Gault, and D. Raabe, Sci. Rep. 7, 40704 (2017).CrossRefGoogle Scholar
  6. 6.
    Z.D. Wang and I. Baker, Mater. Lett. 180, 153 (2016).CrossRefGoogle Scholar
  7. 7.
    H. Zhang, Y.Z. He, and Y. Pan, Scr. Mater. 69, 342 (2013).CrossRefGoogle Scholar
  8. 8.
    G.J. Chen, C. Zhang, and Q.H. Tang, Rare Metal Mater. Eng. 44, 1418 (2015).Google Scholar
  9. 9.
    C.P. Lee, Y.Y. Chen, and C.Y. Hsu, J. Electrochem. Soc. 154, 424 (2007).CrossRefGoogle Scholar
  10. 10.
    H. Zhang, Y. Pan, Y.Z. He, J.L. Wu, T.M. Yue, and S. Guo, JOM 66, 2057 (2014).CrossRefGoogle Scholar
  11. 11.
    T.M. Yue, H. Xie, X. Lin, H.O. Yang, and G.H. Meng, J. Alloy Comp. 587, 588 (2014).CrossRefGoogle Scholar
  12. 12.
    N. Aleksandra, A. Merati, B. Mariusz, B. Manon, F. Olaniyi, and N. Michel, J. Mater. Sci. Technol. 31, 773 (2015).Google Scholar
  13. 13.
    R.F. Zhang, S.H. Sheng, and B.X. Liu, Chem. Phys. Lett. 442, 511 (2007).CrossRefGoogle Scholar
  14. 14.
    Y.T. Wang, Y. Adachi, K. Nakajima, and Y. Sugimoto, Acta Mater. 58, 4849 (2010).CrossRefGoogle Scholar
  15. 15.
    H.L. Yi, Z.Y. Hou, Y.B. Xu, D. Wu, and G.D. Wang, Scr. Mater. 67, 645 (2012).CrossRefGoogle Scholar
  16. 16.
    A. Munitza, L. Meshi, and M.J. Kaufman, Mater. Sci. Eng. A 689, 384 (2017).CrossRefGoogle Scholar
  17. 17.
    A. Munitz, S. Salhov, S. Hayun, and N. Frage, J Alloy Compd. 683, 221 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringAnhui University of TechnologyMa’anshanPeople’s Republic of China
  2. 2.Department of Materials and Manufacturing TechnologyChalmers University of TechnologyGöthenburgSweden

Personalised recommendations