Skip to main content
Log in

Morphology, Texture and Corrosion Behavior of Nanocrystalline Copper–Graphene Composite Coatings

  • Published:
JOM Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This article discusses morphology, texture and corrosion behavior of electrodeposited Cu–graphene composite coatings on mild steel. This study demonstrates that a metal–graphene composite coating, in which graphene is incorporated into a suitable metal matrix, is an effective way to harness the anti-corrosive potential of graphene in producing anti-corrosive coatings for corrosion-prone materials such as steel. Enhanced corrosion resistance of such metal–graphene coatings can facilitate reductions in the requisite coating thickness and material costs in a given coating application. Cu–graphene composite coatings were electrodeposited from sulfate-based acidic electrolytic baths consisting of uniform dispersions of electrochemically exfoliated graphene. Incorporation of graphene into a Cu matrix promoted finer coating morphology, reduction in crystallite size and a strong <220> texture, which subsequently made these composite coatings about 43% more corrosion resistant in 3.5% NaCl when compared to pure Cu coatings. Enhanced corrosion resistance of the composite coatings was indicated by the corrosion potential which increased with the amount of incorporated graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.K. Punith Kumar and C. Srivastava, Mater. Charact. 85, 82 (2013).

    Article  Google Scholar 

  2. M. Dutta, A.K. Halder, and S.B. Singh, Surf. Coat. Technol. 205, 2578 (2010).

    Article  Google Scholar 

  3. S. Schuerz, M. Fleischanderl, G.H. Luckeneder, K. Preis, T. Haunschmied, G. Mori, and A.C. Kneissl, Corros. Sci. 51, 2355 (2009).

    Article  Google Scholar 

  4. T. Prosek, A. Nazarov, U. Bexell, D. Thierry, and J. Serak, Corros. Sci. 50, 2216 (2008).

    Article  Google Scholar 

  5. G. Kear, B.D. Barker, and F.C. Walsh, Corros. Sci. 46, 109 (2004).

    Article  Google Scholar 

  6. F.B. Mansfeld, G. Liu, H. Xiao, C.H. Tsai, and B.J. Little, Corros. Sci. 36, 2063 (1994).

    Article  Google Scholar 

  7. J. Mathiyarasu, N. Palaniswamy, and V.S. Muralidharan, J. Chem. Sci. 111, 377 (1999).

    Google Scholar 

  8. J. Elgundy, S. Moffitt, H. Hasman, C. Andrade, S. Raghavan, and C. Rensing, Appl. Microbiol. Biotechnol. 89, 1963 (2011).

    Article  Google Scholar 

  9. L.L. Barbosa, M.R.H. de Almeida, R.M. Carlos, M. Yonashiro, G.M. Oliveira, and I.A. Carlos, Surf. Coat. Technol. 192, 145 (2005).

    Article  Google Scholar 

  10. Z.A. Hamid and A.A. Aal, Surf. Coat. Technol. 203, 1360 (2009).

    Article  Google Scholar 

  11. S. Miura and H. Honma, Surf. Coat. Technol. 169–170, 91 (2003).

    Article  Google Scholar 

  12. W. Aperador, E. Delgado, and A. Mejía, Int. J. Electrochem. Sci. 8, 12154 (2013).

    Google Scholar 

  13. K.N. Srinivasan, N.V. Shamugam, M. Selvam, and S. John, B. Electrochem. 4, 318 (1988).

    Google Scholar 

  14. R.K. Singh Raman, P. Chakraborty Banerjee, D.E. Lobo, H. Gullapalli, M. Sumandasa, A. Kumar, L. Choudhary, R. Tkacz, P.M. Ajayan, and M. Majumder, Carbon 50, 4040 (2012).

    Article  Google Scholar 

  15. V. Berry, Carbon 62, 1 (2013).

    Article  Google Scholar 

  16. F. Zhou, Z. Li, G.J. Shenoy, L. Li, and H. Liu, ACS Nano 7, 6939 (2013).

    Article  Google Scholar 

  17. S. Chen, L. Brown, M. Levendorf, W. Cai, S.-Y. Ju, J. Edgeworth, X. Li, C.W. Magnuson, A. Velamakanni, R.D. Piner, J. Kang, J. Park, and R.S. Ruoff, ACS Nano 5, 1321 (2011).

    Article  Google Scholar 

  18. D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, and K.I. Bolotin, ACS Nano 6, 1102 (2012).

    Article  Google Scholar 

  19. M. Schriver, W. Regan, W.J. Gannett, A.M. Zaniewski, M.F. Crommie, and A. Zettl, ACS Nano 7, 5763 (2013).

    Article  Google Scholar 

  20. R. Berlia, M.K. Punith Kumar, and C. Srivastava, RSC Adv. 5, 71413 (2015).

    Article  Google Scholar 

  21. M.Y. Rekha, M.K.P. Kumar, and C. Srivastava, RSC Adv. 6, 62083 (2016).

    Article  Google Scholar 

  22. A.M. Abdelkader, A.J. Cooper, R.A.W. Dryfe, and I.A. Kinloch, Nanoscale 7, 6944 (2015).

    Article  Google Scholar 

  23. A. Ambrosi, C.K. Chua, A. Bonanni, and M. Pumera, ACS Chem. Rev. 114, 7150 (2014).

    Article  Google Scholar 

  24. A.S.S. Pavan and S.R. Ramanan, Appl. Nanosci. (2016). doi:10.1007/s13204-016-0530-2.

    Google Scholar 

  25. M.K. Punith Kumar, S. Shanthini, and C. Srivastava, RSC Adv. 5, 53865 (2015).

    Article  Google Scholar 

  26. Y. Raghupathy, K.A. Natarajan, and C. Srivastava, J. Mater. Sci. Eng. B 206, 1 (2016).

    Article  Google Scholar 

  27. S. Ruppi, Int. J. Refract. Met. Hard Mater. 23, 306 (2005).

    Article  Google Scholar 

  28. G. Bianchi and P. Longhi, Corros. Sci. 13, 853 (1973).

    Article  Google Scholar 

  29. F. Arjmand and A. Adriaens, Materials 5, 2439 (2012).

    Article  Google Scholar 

  30. X.Y. Wang and D.Y. Li, Electrochim. Acta 47, 3939 (2002).

    Article  Google Scholar 

  31. J.K. Yu, E.H. Han, L. Lu, X.J. Wei, and M. Leung, J. Mater. Sci. 40, 1019 (2005).

    Article  Google Scholar 

  32. W. Luo, Y. Xu, Q. Wang, P. Shi, and M. Yan, Corros. Sci. 52, 3509 (2010).

    Article  Google Scholar 

  33. W. Luo, C. Qian, X.J. Wu, and M. Yan, J. Mater. Sci. Eng. A 452–453, 524 (2007).

    Article  Google Scholar 

  34. E. Martinez-Lombardiaa, Y. Gonzalez-Garciaa, L. Lapeire, I. De Graevea, K. Verbekenb, L. Kestens, J.M.C. Mol, and H. Terryn, Electrochim. Acta 116, 89 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This research work was funded by Joint Advanced Technology Program (JATP), Indian Institute of Science, Bangalore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamboj, A., Raghupathy, Y., Rekha, M.Y. et al. Morphology, Texture and Corrosion Behavior of Nanocrystalline Copper–Graphene Composite Coatings. JOM 69, 1149–1154 (2017). https://doi.org/10.1007/s11837-017-2364-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2364-0

Keywords

Navigation