Skip to main content
Log in

Microstructures, Mechanical Properties and Thermal Conductivities of W-0.5 wt.%TiC Alloys Prepared via Ball Milling and Wet Chemical Method

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Two kinds of W-0.5 wt.%TiC alloys were prepared, one by ball milling and the other by the wet chemical method. For comparison, pure tungsten powders were chemically prepared and sintered by the same process. The microstructures, mechanical properties and thermal conductivities of the prepared samples were characterized. It has been found that the wet chemical method resulted in finer sizes and more uniform distribution of TiC particles in the sintered tungsten matrix than the ball milling method. The W-TiC alloy prepared by the wet chemical method achieved the highest bending strength (1065.72 MPa) among the samples. Further, it also exhibited obviously higher thermal conductivities in the temperature range of room temperature to 600°C than did the W-TiC alloy prepared by ball milling, but the differences in their thermal conductivities could be ignored in the range of 600–800°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P. Norajitra, L.V. Boccaccini, A. Gervash, R. Giniyatulin, N. Holstein, T. Ihli, G. Janeschitz, W. Krauss, R. Kruessmann, V. Kuznetsov, A. Makhankov, I. Mazul, A. Moeslang, I. Ovchinnikov, M. Rieth, and B. Zeep, J. Nucl. Mater. 367, 1416 (2007).

    Article  Google Scholar 

  2. S. Yamoto, Y. Homma, K. Hoshino, Y. Sawada, X. Bonnin, D. Coster, R. Schneider, and A. Hatayama, J. Nucl. Mater. 463, 615 (2015).

    Article  Google Scholar 

  3. P. Norajitra, L.V. Boccaccini, E. Diegele, V. Filatov, A. Gervash, R. Giniyatulin, S. Gordeev, V. Heinzel, G. Janeschitz, J. Konys, W. Krauss, R. Kruessmann, S. Malang, I. Mazul, A. Moeslang, C. Petersen, G. Reimann, M. Rieth, G. Rizzi, M. Rumyantsev, R. Ruprecht, and V. Slobodtchouk, J. Nucl. Mater. 329, 1594 (2004).

    Article  Google Scholar 

  4. M. Kaufmann and R. Neu, Fusion Eng. Des. 82, 521 (2007).

    Article  Google Scholar 

  5. H. Kurishita, S. Kobayashi, K. Nakai, T. Ogawa, A. Hasegawa, K. Abe, H. Arakawa, S. Matsuo, T. Takida, K. Takebe, M. Kawai, and N. Yoshida, J. Nucl. Mater. 377, 34 (2008).

    Article  Google Scholar 

  6. H. Kurishita, Y. Amano, S. Kobayashi, K. Nakai, H. Arakawa, Y. Hiraoka, T. Takida, K. Takebe, and H. Matsui, J. Nucl. Mater. 367, 1453 (2007).

    Article  Google Scholar 

  7. H. Kurishita, S. Kobayashi, K. Nakai, H. Arakawa, S. Matsuo, T. Takida, K. Takebe, and M. Kawai, Phys. Scr. T128, 76 (2007).

    Article  Google Scholar 

  8. Y. Kitsunai, H. Kurishita, H. Kayano, Y. Hiraoka, T. Igarashi, and T. Takida, J. Nucl. Mater. 271, 423 (1999).

    Article  Google Scholar 

  9. H. Kurishita, S. Matsuo, H. Arakawa, M. Narui, M. Yamazaki, T. Sakamoto, S. Kobayashi, K. Nakaib, T. Takida, K. Takebe, M. Kawai, and N. Yoshida, J. Nucl. Mater. 386–388, 579 (2009).

    Article  Google Scholar 

  10. S. Lang, Q. Yan, N. Sun, X. Zhang, L. Deng, Y. Wang, and C. Ge, J. Alloys Compd. 660, 184 (2016).

    Article  Google Scholar 

  11. Y. Ishijima, S. Kannari, H. Kurishita, M. Hasegawa, Y. Hiraoka, T. Takida, and K. Takebe, Mater. Sci. Eng. A 473, 7 (2008).

    Article  Google Scholar 

  12. M. Xia, Q. Yan, L. Xu, L. Zhu, H. Guo, and C. Ge, J. Nucl. Mater. 430, 216 (2012).

    Article  Google Scholar 

  13. S. Lang, Q. Yan, Y. Wang, X. Zhang, N. Sun, L. Deng, and C. Ge, Int. J. Refract. Met. Hard Mater. 55, 33 (2016).

    Article  Google Scholar 

  14. J. Tan, Z. Zhou, D. Qu, Y. Ma, and M. Li, Rare Met. Mater. Eng. 40, 1990 (2011).

    Google Scholar 

  15. A. Muñoz, B. Savoini, E. Tejado, M.A. Monge, J.Y. Pastor, and R. Pareja, J. Nucl. Mater. 455, 306 (2014).

    Article  Google Scholar 

  16. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nat. Mater. 12, 344 (2013).

    Article  Google Scholar 

  17. Z.M. Xie, R. Liu, S. Miao, X.D. Yang, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, G.N. Luo, Y.Y. Lian, and X. Liu, Sci. Rep. 5, 16014 (2015).

    Article  Google Scholar 

  18. G. Pintsuk, H. Kurishita, J. Linke, H. Arakawa, S. Matsuo, T. Sakamoto, S. Kobayashi, and K. Nakai, Phys. Scr. T145, 014060 (2011).

    Article  Google Scholar 

  19. X. Tan, P. Li, L. Luo, Q. Xu, K. Tokunaga, X. Zan, and Y. Wu, Nucl. Mater. Energy 9, 399 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the ITER-National Magnetic Confinement Fusion Program (Grant No. 2014 GB123000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhi Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, S., Yan, Q., Sun, N. et al. Microstructures, Mechanical Properties and Thermal Conductivities of W-0.5 wt.%TiC Alloys Prepared via Ball Milling and Wet Chemical Method. JOM 69, 1992–1996 (2017). https://doi.org/10.1007/s11837-017-2363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2363-1

Keywords

Navigation