Skip to main content
Log in

CFD Simulation of Effect of Interphase Forces and Turbulence Models on Gas–Liquid Two-Phase Flows in Non-Industrial Aluminum Electrolysis Cells

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Numerical simulations of gas–liquid two-phase flows in aluminum electrolysis cells using the Euler–Euler approach were presented. The attempt was made to assess the performance and applicability of different interphase forces (drag, lift, wall lubrication, and turbulent dispersion forces) and turbulence models (standard kε, renormalization group kε, standard kω, shear stress transport kω, and Reynolds stress models). Moreover, three different bubble-induced turbulence models have been also analyzed. The simulated electrolyte velocity profiles were discussed by comparing with each other and against published experimental data. Based on the results of the validation of different interphase forces and turbulence models, a set consisting of the dispersed standard kε model, Grace drag coefficient model, Simonin turbulent dispersion force model, and Sato et al.’s bubble-induced effective viscosity model was found to provide the best agreement with the experimental data. The prediction results showed that the contributions of the lift force and the wall lubrication force can be neglected for the present bubbly flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.X. Liu and J. Li, Modern Aluminum Electrolysis (Beijing: Metallurgical Industry Press, 2008), pp. 3–8.

    Google Scholar 

  2. M.A. Cooksey, M.P. Taylor, and J.J.J. Chen, JOM 60, 51 (2008).

    Article  Google Scholar 

  3. L.I. Kiss, A.L. Perron, S. Poncsak, and T.N. Guyen, Light Metals 2007, ed. M. Sørlie (Orlando: TMS, 2007), pp. 495–500.

    Google Scholar 

  4. Y.Q. Feng, W. Yang, M.A. Cooksey, and M.P. Schwarz, J. Comput. Multiph. Flows 2, 179 (2010).

    Article  Google Scholar 

  5. S.Q. Zhan, M. Li, J.M. Zhou, J.H. Yang, and Y.W. Zhou, Light Metals 2014, ed. J. Grandfield (San Diego: TMS, 2014), pp. 777–782.

    Google Scholar 

  6. R. Oey, R. Mudde, and H. Van den Akker, AIChE J. 49, 1621 (2003).

    Article  Google Scholar 

  7. N.J. Zhou, X.X. Xia, F.Q. Wang, and J. Cent, South Univ. T. 14, 42 (2007).

    Article  Google Scholar 

  8. J. Li, Y.J. Xu, H.L. Zhang, and Y.Q. Lai, Int. J. Multiph. Flow 37, 46 (2011).

    Article  Google Scholar 

  9. Y.Q. Feng, M.P. Schwarz, W. Yang, and M.A. Cooksey, Metall. Mater. Trans. B 46, 1959 (2015).

    Article  Google Scholar 

  10. M. Ishii and N. Zuber, AIChE J. 25, 843 (1979).

    Article  Google Scholar 

  11. L.A. Schiller and Z. Nauman, Ver. Dtsch. Ing. 77, 135 (1935).

    Google Scholar 

  12. M.V. Tabib, S.A. Roy, and J.B. Joshi, Chem. Eng. J. 139, 589 (2008).

    Article  Google Scholar 

  13. R. Rzehak and E. Krepper, Int. J. Multiph. Flow 55, 138 (2013).

    Article  Google Scholar 

  14. Y. Sato, M. Sadatomi, and K. Sekoguchi, Int. J. Multiph. Flow 7, 167 (1981).

    Article  Google Scholar 

  15. M.A. Cooksey and W. Yang, Light Metals 2006, ed. T.J. Galloway (San Antonio: TMS, 2006), pp. 359–365.

    Google Scholar 

  16. ANSYS Inc., ANYSYS Fluent 14.5 User’s Guide (Canonsburg: Fluent Inc., 2012).

    Google Scholar 

  17. S.Q. Zhan, M. Li, J.M. Zhou, J.H. Yang, and, Y.W. Zhou, J. Cent. South Univ. T. 22, 2482 (2015).

    Article  Google Scholar 

  18. S.Q. Zhan, Ph.D. Dissertation, Central South University, Changsha, 2015.

  19. C. Simonin and P.L. Viollet, Int. J. Numer. Methods Fluids 91, 65 (1990).

    Google Scholar 

  20. A.A. Troshko and Y.A. Hassan, Int. J. Multiph. Flow 27, 1965 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (11502097), the Natural and Science Foundation of Jiangsu Province (BK20130478), the Foundation of Senior Talent of Jiangsu University (2015JDG158), and the China Postdoctoral Science Foundation (2016M591781). Our special thanks are due to Dr. Feng’s Group for assistance with the experiments and valuable discussions and to the anonymous reviewers for insightful suggestions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Geometry and griding of the three-anode model: (a) Inlet and outlet boundary conditions, (b) PIV measurement, (c) Cell geometry, (d) Grid geometry in the horizontal plane, and (e) Grid geometry in the vertical plane (TIFF 1946 kb)

Fig. S2

Comparisons of gas volume fraction distributions at a horizontal plane (z = 0.03 m) for different grid cells: (a) Grid1, (b) Grid2, (c) Grid3, (d) Grid4, and (e) Grid5 (TIFF 919 kb)

Fig. S3

Comparisons of vertical electrolyte profiles for different grid cells (TIFF 118 kb)

Supplementary material 4 (DOC 101 kb)

Supplementary material 5 (DOC 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, S., Yang, J., Wang, Z. et al. CFD Simulation of Effect of Interphase Forces and Turbulence Models on Gas–Liquid Two-Phase Flows in Non-Industrial Aluminum Electrolysis Cells. JOM 69, 1589–1599 (2017). https://doi.org/10.1007/s11837-017-2327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2327-5

Keywords

Navigation