Skip to main content
Log in

Dependence of CO2 Reactivity of Carbon Anodes on Pore Structure

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The correlation between the CO2 reactivity and pore structure of carbon anodes was experimentally investigated. The pore structures of the anodes before and after CO2 oxidation were characterized using image analysis. The porosity, mean pore diameter, and the number of micro-cracks decreased with increasing anode forming pressure, while they increased with over-compaction. With prolonged CO2 oxidation time, the porosity, pore density, mean pore diameter, pore aspect ratio, and the number of micro-cracks increased due to the merging of small pores, increased pore connectivity, and generation of new pores. The activation energy decreased with increasing porosity of the anodes’ pitch phase due to easier CO2 penetration and reaction within the anodes. The results confirm that the fine pitch-coke phase of anodes is preferentially consumed, a cause of carbon dusting. Optimization of the pore structures to balance the pitch, coke, and butt phases may potentially further reduce carbon dusting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Samanos and C. Dreyer, Light Met. 2001, 681 (2001).

    Google Scholar 

  2. J. Lhuissier, L. Bezamanifary, M. Gendre, and M. Chollier, Light Met. 2009, 979 (2009).

    Google Scholar 

  3. N. Fang, J. Xue, G. Lang, C. Bao, and S. Gao, JOM 68, 635 (2016).

    Article  Google Scholar 

  4. R. Paul, Light Met. 1971, 611 (1971).

    Google Scholar 

  5. J. Boero, Light Met. 1981, 580 (1981).

    Google Scholar 

  6. B. Sadler and S. Algie, Light Met. 1981, 687 (1981).

    Google Scholar 

  7. D. Ziegler, Light Met. 2011, 901 (2011).

    Google Scholar 

  8. F. Chevarin, K. Azari, L. Lemieux, D. Ziegler, M. Fafard, and H. Alamdari, Fuel 178, 93 (2016).

    Article  Google Scholar 

  9. F. Chevarin, L. Lemieux, D. Picard, D. Ziegler, M. Fafard, and H. Alamdaria, Fuel 156, 198 (2015).

    Article  Google Scholar 

  10. D. Ye, J. Agnew, and D. Zhang, Fuel 77, 1209 (1998).

    Article  Google Scholar 

  11. E. Veca and A. Adrover, Fuel 123, 151 (2014).

    Article  Google Scholar 

  12. I. Ahmed and A. Gupta, Appl. Energy 88, 1613 (2011).

    Article  Google Scholar 

  13. P. Li, Q. Yu, H. Xie, and Q. Qin, Energy Fuels 27, 4810 (2013).

    Article  Google Scholar 

  14. T. Popa, M. Fan, and M. Argyle, Fuel 103, 161 (2013).

    Article  Google Scholar 

  15. M. Chan, J. Jones, M. Pourkashanian, and A. Williams, Fuel 78, 1539 (1999).

    Article  Google Scholar 

  16. J. Liao, T. Chen, B. Huang, G. Shi, and X. Xiong, Carbon 40, 617 (2002).

    Article  Google Scholar 

  17. J. Liao, B. Huang, G. Shi, T. Chen, and X. Xiong, Carbon 40, 2483 (2002).

    Article  Google Scholar 

  18. B. Feng and S. Bhatia, Carbon 41, 507 (2003).

    Article  Google Scholar 

  19. X. Xing, R. Harold, G. Zhang, H. Kim, Z. Paul, and O. Oleg, Energy Fuels 30, 161 (2016).

    Article  Google Scholar 

  20. Y. Wang, J. Peng, Y. Di, and N. Feng, Trans. Nonferr. Met. Soc. China 23, 3119 (2013).

    Article  Google Scholar 

  21. S. Lin, M. Hirato, and M. Horio, Fuel 8, 598 (1994).

    Article  Google Scholar 

  22. X. Xing, G. Zhang, D. Mark, C. George, Q. Meng, and O. Oleg, Metall. Mater. Trans. B 44B, 862 (2013).

    Article  Google Scholar 

  23. X. Li, J. Xue, J. Zhu, and Q. Zhang, Light Met. 2012, 1319 (2012).

    Google Scholar 

  24. P. Ehrburger, E. Sanseigne, and B. Tahon, Fuel 23, 1493 (1996).

    Google Scholar 

  25. S. Roervik and H. Oye, Light Met. 1996, 561 (1996).

    Google Scholar 

  26. A. Adams, J. Mathews, and H. Schobert, Light Met. 2002, 547 (2002).

    Google Scholar 

  27. S. Roervik, A. Ratvik, and T. Foosnes, Light Met. 2006, 553 (2006).

    Google Scholar 

  28. X. Huang, D. Kocaefe, D. Bhattacharyay, Y. Kocaefe, and B. Morais, Light Met. 2016, 859 (2016).

    Google Scholar 

  29. J. Patrick, M. Sims, and A. Stacey, J. Microsc. 109, 137 (1977).

    Article  Google Scholar 

  30. J. Xue, M. Han, J. Zhu, L. Feng, and H. Ma, Light Met. 2012, 1229 (2012).

    Google Scholar 

  31. A. Gomez and N. Mahinpey, Chem. Eng. Res. Des. 95, 346 (2015).

    Article  Google Scholar 

  32. S. Vyazovkin and C. Wight, Thermochim. Acta 340, 53 (1999).

    Article  Google Scholar 

  33. R. Luo, Z. Yang, and L. Li, Carbon 38, 109 (2000).

    Google Scholar 

  34. P. Gao, W. Guo, H. Xiao, and J. Guo, Mater. Sci. Eng. A 432, 226 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

Supports from the Fundamental Research Funds for Central Universities of China (No. FRF-UM-15-049) and National Natural Science Foundation of China (Nos. 51434005 and 51674025) as well as the assistance of the staff of the Sunstone Research Center, China, are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilai Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Xue, J., Lang, G. et al. Dependence of CO2 Reactivity of Carbon Anodes on Pore Structure. JOM 69, 1600–1606 (2017). https://doi.org/10.1007/s11837-017-2324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2324-8

Keywords

Navigation