Skip to main content
Log in

Effect of Spark-Plasma-Sintering Conditions on Tensile Properties of Aluminum Matrix Composites Reinforced with Multiwalled Carbon Nanotubes (MWCNTs)

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, aluminum (Al) matrix composites containing 2 wt.% multiwalled carbon nanotubes (CNTs) were fabricated by powder metallurgy using high-energy ball milling (HEBM), spark plasma sintering (SPS), and subsequent hot extrusion. The effect of SPS conditions on the tensile properties of CNT/Al composites was investigated. The results showed that composites with well-dispersed CNTs and nearly full-density CNT/Al can be obtained. During HEBM, CNTs were shortened, inserted into welded Al powder particles, bonded to Al, and still stable without CNT-Al reaction. After consolidation, Al4C3 phases formed in composites under different sintering conditions. With the increase of sintering temperature and holding time, the strength decreased. Conversely, the ductility and toughness noticeably increased. As a result, a good balance between strength (367 MPa in ultimate tensile strength) and ductility (13% in elongation) was achieved in the as-extruded CNT/Al composite sintered at 630°C with a holding time of 300 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V.N. Popov, Mater. Sci. Eng., R 43, 61 (2004).

    Article  Google Scholar 

  2. S.C. Tjong, Mater. Sci. Eng., R 74, 281 (2013).

    Article  Google Scholar 

  3. S.R. Bakshi and A. Agarwal, Carbon 49, 533 (2011).

    Article  Google Scholar 

  4. C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li, and Q. Cui, Adv. Mater. 19, 1128 (2007).

    Article  Google Scholar 

  5. C.N. He, N.Q. Zhao, C.S. Shi, and S.Z. Song, J. Alloys Compd. 487, 258 (2009).

    Article  Google Scholar 

  6. L. Jiang, G. Fan, Z. Li, X. Kai, D. Zhang, Z. Chen, S. Humphries, G. Heness, and W.Y. Yeung, Carbon 49, 1965 (2011).

    Article  Google Scholar 

  7. L. Jiang, Z. Li, G. Fan, L. Cao, and D. Zhang, Carbon 50, 1993 (2012).

    Article  Google Scholar 

  8. Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Carbon 50, 1843 (2012).

    Article  Google Scholar 

  9. Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Carbon 62, 35 (2013).

    Article  Google Scholar 

  10. B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, and K. Kondoh, Mater. Des. 72, 1 (2015).

    Article  Google Scholar 

  11. H. Uozumi, K. Kobayashi, K. Nakanishi, T. Matsunaga, K. Shinozaki, H. Sakamoto, T. Tsukada, C. Masuda, and M. Yoshida, Mater. Sci. Eng., A 495, 282 (2008).

    Article  Google Scholar 

  12. K. Kang, G. Bae, J. Won, and C. Lee, Acta Mater. 60, 5031 (2012).

    Article  Google Scholar 

  13. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Carbon 47, 570 (2009).

    Article  Google Scholar 

  14. B. Chen, L. Jia, S. Li, H. Imai, M. Takahashi, and K. Kondoh, Adv. Eng. Mater. 16, 972 (2014).

    Article  Google Scholar 

  15. B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, and K. Kondoh, Compos. Sci. Technol. 113, 1 (2015).

    Article  Google Scholar 

  16. B. Chen, K. Kondoh, H. Imai, J. Umeda, and M. Takahashi, Scr. Mater. 113, 158 (2016).

    Article  Google Scholar 

  17. H. Wei, Z. Li, D.-B. Xiong, Z. Tan, G. Fan, Z. Qin, and D. Zhang, Scr. Mater. 75, 30 (2014).

    Article  Google Scholar 

  18. Y. Sun, H. Cui, L. Gong, J. Chen, P.K. Shen, and C.X. Wang, Nanoscale 3, 2978 (2011).

    Article  Google Scholar 

  19. A.K. Zak, W.A. Majid, M.E. Abrishami, and R. Yousefi, Solid State Sci. 13, 251 (2011).

    Article  Google Scholar 

  20. B. Chen, H. Imai, S. Li, L. Jia, J. Umeda, and K. Kondoh, JOM 67, 2887 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kondoh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Imai, H., Umeda, J. et al. Effect of Spark-Plasma-Sintering Conditions on Tensile Properties of Aluminum Matrix Composites Reinforced with Multiwalled Carbon Nanotubes (MWCNTs). JOM 69, 669–675 (2017). https://doi.org/10.1007/s11837-017-2263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2263-4

Keywords

Navigation