Skip to main content

Crystallization and Corrosion Resistance in Different Aqueous Solutions of Zr50.7Ni28Cu9Al12.3 Amorphous Alloy and Its Crystallization Counterparts

Abstract

The Zr50.7Ni28Cu9Al12.3 amorphous alloy and its crystallization counterparts have been prepared using a melt spinning technique and proper annealing treatment. The as-annealed products at 768 K are amorphous composites consisting of a main amorphous phase and a few ZrO2 nanocrystals. The corrosion behaviors have been investigated in 0.5-M NaCl, 1-M HCl, and 0.5-M H2SO4 solutions. The results show that amorphous composites present the enhanced corrosion resistance in Cl containing solutions due to the formation of compact passive films, which are promoted by an appropriate quantity of ZrO2 nanocrystals. Nevertheless, the relaxed samples possess good corrosion resistance in H2SO4 solution, which is attributed to the existence of Zr(Al, Ni)-rich protective film induced by the depletion of Cu. In addition, corrosion resistance of the tested alloys is relatively superior in H2SO4 solution, especially for pitting corrosion resistance, and inferior in HCl solution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. P.K. Liaw, G.Y. Wang, and J. Schneider, JOM 62, 9 (2010).

    Article  Google Scholar 

  2. A. Inoue and A. Takeuchi, Acta Mater. 59, 2243 (2011).

    Article  Google Scholar 

  3. F.X. Qin, H.F. Zhang, Y.F. Deng, B.Z. Ding, and Z.Q. Hu, J. Alloys Compd. 375, 318 (2004).

    Article  Google Scholar 

  4. M.S. Bakare, K.T. Voisey, K. Chokethawai, and D.G. McCartney, J. Alloys Compd. 527, 210 (2012).

    Article  Google Scholar 

  5. D.P. Wang, S.L. Wang, and J.Q. Wang, Corros. Sci. 59, 88 (2012).

    Article  Google Scholar 

  6. Y. Gan, W.X. Wang, Z.S. Guan, and Z.Q. Cui, Opt. Laser Technol. 69, 17 (2015).

    Article  Google Scholar 

  7. W.J. Botta, J.E. Berger, C.S. Kiminami, V. Roche, R.P. Nogueira, and C. Bolfarini, J. Alloys Compd. 586, S105 (2014).

    Article  Google Scholar 

  8. J.Q. Wang, A.P. Wang, X.C. Chang, and W.L. Hou, Corros. Sci. 49, 2628 (2007).

    Article  Google Scholar 

  9. H.C. Kou, Y. Li, T.B. Zhang, J. Li, and J.S. Li, Trans. Nonferrous Metall. Soc. China 21, 552 (2011).

    Article  Google Scholar 

  10. C.H. Huang, J.J. Lai, T.Y. Wei, Y.H. Chen, X. Wang, S.Y. Kuan, and J.C. Huang, Mater. Sci. Eng. C 52, 144 (2015).

    Article  Google Scholar 

  11. Y. Wang, K. Zhang, X.L. Gao, Y.G. Dong, and Q. Xing, J. Non-Cryst. Solids 425, 46 (2015).

    Article  Google Scholar 

  12. S.F. Guo, H.J. Zhang, Z. Liu, W. Chen, and S.F. Xie, Electrochem. Commun. 24, 39 (2012).

    Article  Google Scholar 

  13. R. Jindal, V.S. Raja, M.A. Gibson, M.J. Styles, T.J. Bastow, and C.R. Hutchinson, Corros. Sci. 84, 54 (2014).

    Article  Google Scholar 

  14. Y.J. Sun, D.D. Qu, Y.J. Huang, K.D. Liss, X.S. Wei, and D.W. Xing, Acta Mater. 57, 1290 (2009).

    Article  Google Scholar 

  15. S. Sharma and C. Suryanarayana, Scr. Mater. 58, 508 (2008).

    Article  Google Scholar 

  16. X.F. Wang, X.Q. Wu, J.G. Lin, and M. Ma, Mater. Lett. 61, 1715 (2007).

    Article  Google Scholar 

  17. J.G. Lin, W.W. Wang, X.Q. Wu, J.H. Lei, and S. Yin, J. Alloys Compd. 478, 763 (2009).

    Article  Google Scholar 

  18. T. Egami and Y. Waseda, J. Non-Cryst. Solids 64, 113 (1984).

    Article  Google Scholar 

  19. W.H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A. Carmichael, and J.L. Wright, Intermetallics 10, 1157 (2002).

    Article  Google Scholar 

  20. U.K. Mudali, S. Baunack, J. Eckert, L. Schultz, and A. Gebert, J. Alloys Compd. 377, 290 (2004).

    Article  Google Scholar 

  21. G.H. Li, S.P. Pan, J.Y. Qin, Z.H. Zhang, and W.M. Wang, Corros. Sci. 66, 360 (2013).

    Article  Google Scholar 

  22. S.D. Zhang, Z.M. Wang, X.C. Chang, W.L. Hou, and J.Q. Wang, Corros. Sci. 53, 3007 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge financial support from the Natural Science Foundation of China (No. 51671095) and the Key Research Development Program of Shandong Province of China (No. 2015GGx102016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ge, W., Li, B., Axinte, E. et al. Crystallization and Corrosion Resistance in Different Aqueous Solutions of Zr50.7Ni28Cu9Al12.3 Amorphous Alloy and Its Crystallization Counterparts. JOM 69, 776–783 (2017). https://doi.org/10.1007/s11837-017-2258-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2258-1

Keywords

  • Corrosion Resistance
  • Amorphous Alloy
  • Passive Film
  • Amorphous Matrix
  • H2SO4 Solution