Skip to main content

Sintering Behavior and Microstructure Formation of Titanium Aluminide Alloys Processed by Metal Injection Molding

Abstract

The sintering behavior of metal injection molded titanium aluminide alloys, their microstructure formation and resulting mechanical properties were investigated. As reference material, the alloy Ti-45Al-5Nb-0.2B-0.2C at.% (TNB-V5) was selected. Additionally, two other variations with Mo and Mo + Si additions were prepared: Ti-45Al-3Nb-1Mo-0.2B-0.2C at.% and Ti-45Al-3Nb-1Mo-1Si-0.2B-0.2C at.%. The results indicate that the optimum sintering temperature was slightly above the solidus line. With proper sintering parameters, very low porosities (<0.5%) and fine microstructures with a colony size <85 µm could be achieved. Considering the sintering temperatures applied, the phase transformations upon cooling could be described as L + β → β → α + β → α → α + γ → α2 + γ, which was in agreement with the microstructures observed. The effects of Mo and Si were opposite regarding the sintering behavior. Mo addition led to an increase in the optimum sintering temperature, whereas Si caused a significant decrease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Y.-W. Kim, JOM 47, 38 (1995).

    Article  Google Scholar 

  2. 2.

    F. Appel, J.D.H. Paul, and M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology, 1st ed. (Weinheim: Wiley-VCH Verlag, 2011).

    Book  Google Scholar 

  3. 3.

    Y.W. Kim, JOM 47, 39 (1995).

    Article  Google Scholar 

  4. 4.

    P. Bartolotta, J. Barrett, T. Kelly, and R. Smashey, JOM 49, 48 (1997).

    Article  Google Scholar 

  5. 5.

    A.K. Sachdev, K. Kulkarni, Z.Z. Fang, R. Yang, and V. Girshov, JOM 64, 553 (2012).

    Article  Google Scholar 

  6. 6.

    M.M. Keller, P.E. Jones, W.J. Porter, and D. Eylon, JOM 49, 42 (1997).

    Article  Google Scholar 

  7. 7.

    J. Soyama, M. Oehring, W. Limberg, T. Ebel, K.U. Kainer, and F. Pyczak, Powder Metall. 58, 369 (2016).

    Article  Google Scholar 

  8. 8.

    M. Scharvogel and W. Winkelmueller, JOM 63, 94 (2011).

    Google Scholar 

  9. 9.

    B. Liu and Y. Liu, Titanium Powder Metallurgy, 1st ed., ed. M. Qian and F.H. Froes (Waltham: Elsevier, 2015), pp. 515–531.

    Chapter  Google Scholar 

  10. 10.

    S. Ma, J. Xing, G. Liu, D. Yi, H. Fu, J. Zhang, and Y. Li, Mater. Sci. Eng., A 527, 6800 (2010).

    Article  Google Scholar 

  11. 11.

    S. Ye, H. Hao, W. Mo, K. Yu, L. Liu, C. Deng, and P. Yu, J. Alloys Compd. 673, 399 (2016).

    Article  Google Scholar 

  12. 12.

    J. Soyama, M. Oehring, W. Limberg, T. Ebel, K.U. Kainer, and F. Pyczak, Mater. Des. 84, 87 (2015).

    Google Scholar 

  13. 13.

    W. Limberg, T. Ebel, F. Pyczak, M. Oehring, and F.P. Schimansky, Mater. Sci. Eng., A 552, 323 (2012).

    Article  Google Scholar 

  14. 14.

    Y. Xia, G.B. Schaffer, and M. Qian, J. Alloys Compd. 578, 195 (2013).

    Article  Google Scholar 

  15. 15.

    Y. Xia, P. Yu, G.B. Schaffer, and M. Qian, Mater. Sci. Eng., A 574, 176 (2013).

    Article  Google Scholar 

  16. 16.

    F. Appel, M. Oehring, and R. Wagner, Intermetallics 8, 1283 (2000).

    Article  Google Scholar 

  17. 17.

    T. Klein, B. Rashkova, D. Holec, H. Clemens, and S. Mayer, Acta Mater. 110, 236 (2016).

    Article  Google Scholar 

  18. 18.

    M. Takeyama and S. Kobayashi, Intermetallics 13, 993 (2005).

    Article  Google Scholar 

  19. 19.

    O.M. Ferri, T. Ebel, and R. Bormann, Mater. Sci. Eng., A 527, 1800 (2010).

    Article  Google Scholar 

  20. 20.

    Y. Mishin and C. Herzig, Acta Mater. 48, 589 (2000).

    Article  Google Scholar 

  21. 21.

    J. Soyama, M. Oehring, W. Limberg, T. Ebel, K.U. Kainer, and F. Pyczak, Powder Metall. 58, 5 (2015).

    Article  Google Scholar 

  22. 22.

    A.A. Zaitsev, Y.Y. Kaplanskii, Z.A. Sentyurina, E.A. Levashov, A.V. Kasimtsev, Y.S. Pogozhev, S.N. Yudin, T.A. Sviridova, and A.V. Malyarov, Russ. J. Non-Ferrous Met. 57, 113 (2016).

    Article  Google Scholar 

  23. 23.

    Y.-W. Kim, Mater. Sci. Eng., A 192–193, 519 (1995).

    Article  Google Scholar 

  24. 24.

    D. Hu, X. Wu, and M.H. Loretto, Intermetallics 13, 914 (2005).

    Article  Google Scholar 

  25. 25.

    D. Hu, J.F. Mei, M. Wickins, and R.A. Harding, Scr. Mater. 47, 273 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Andreas Dobernowsky, Dr. Dapeng Zhao, Dirk Matthiessen, Dr. Frank-Peter Schimansky, Gert Wiese, Dr. Jonathan Paul, Prof. Dr. Michael Dahms, Petra Fischer, Uwe Lorenz, Dr. Victor Vitusevych and Wolfgang Limberg.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juliano Soyama.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soyama, J., Oehring, M., Ebel, T. et al. Sintering Behavior and Microstructure Formation of Titanium Aluminide Alloys Processed by Metal Injection Molding. JOM 69, 676–682 (2017). https://doi.org/10.1007/s11837-016-2252-z

Download citation

Keywords

  • Sinter Temperature
  • Colony Size
  • Melting Peak
  • Sinter Behavior
  • Titanium Aluminides