Skip to main content

Fabrication of Ta2O5 Dispersion-Strengthened Mo-Si-B Alloy by Powder Metallurgical Method

Abstract

In this study, we investigate the effect of oxide dispersion strengthening on mechanical properties by dispersion of nano-sized Ta2O5 particles in Mo-Si-B alloy. A Mo-Si-B core-shell powder consisting of two intermetallic compounds of Mo5SiB2 and Mo3Si as the core and nano-sized Mo solid solution surrounding intermetallic compounds was fabricated by chemical vapor transport. And Mo-Si-B core-shell powder with uniformly dispersed nano-sized Ta2O5 particles on the surface of a Mo solid solution shell was produced by a wet blending process with TaCl5 solution and heat treatment. Then, pressureless sintering was performed at 1400°C for 3 h under a H2 atmosphere. The hardness and fracture toughness of the Ta2O5-dispersed Mo-Si-B alloy were measured using Vickers hardness and 3-point bending tests, respectively. The Vickers hardness and fracture toughness of the fabricated Mo-Si-B-Ta2O5 alloy were more improved than that of the Mo-Si-B alloy fabricated using core-shell powder with no addition of Ta2O5 particles (Mo-Si-B alloy: 353 Hv, 13.5 MPa·√m, Mo-Si-B-Ta2O5 alloy: 509 Hv, 15.1 MPa·√m).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. D.M. Dimiduk and J.H. Perepezko, MRS Bull. 28, 639 (2003).

    Article  Google Scholar 

  2. J.H. Perepezko, Science 326, 1068 (2009).

    Article  Google Scholar 

  3. S.H. Kim, N.W. Kim, Y.K. Jeong, S.T. Oh, Y.D. Kim, S. Lee, and M.J. Suk, J. Kor. Powd. Met. Inst. 22, 426 (2015).

    Article  Google Scholar 

  4. J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie, Metall. Mater. Trans. A 36A, 2393 (2005).

    Article  Google Scholar 

  5. A. Lange and R. Braun, Corros. Sci. 84, 74 (2014).

    Article  Google Scholar 

  6. M.R. Middlemas and J.K. Cochran, JOM 62, 20 (2010).

    Article  Google Scholar 

  7. M. Krüger, P. Jain, K.S. Kumar, and M. Heilmaier, Intermetallics 48, 10 (2014).

    Article  Google Scholar 

  8. M. Krüger, S. Franz, H. Saage, M. Heilmaier, J.H. Schneibel, P. Jéhanno, M. Böning, and H. Kestler, Intermetallics 16, 933 (2008).

    Article  Google Scholar 

  9. K. Ihara, K. Ito, K. Tanaka, and M. Yamaguchi, Mater. Sci. Eng., A 222, 329 (2002).

    Google Scholar 

  10. I. Rosales and J.H. Schneibel, Intermetallics 8, 885 (2000).

    Article  Google Scholar 

  11. F. Chu, D.J. Thoma, K. McClellan, P. Peralta, and Y. He, Intermetallics 7, 611 (1999).

    Article  Google Scholar 

  12. J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie, Scripta Mater. 50, 459 (2004).

    Article  Google Scholar 

  13. A.P. Alur and K.S. Kumar, Acta Mater. 54, 385 (2006).

    Article  Google Scholar 

  14. J.M. Byun, S.H. Hwang, S. Lee, M.J. Suk, S.T. Oh, and Y.D. Kim, Int. J. Refract. Met. Hard Mater. 53, 61 (2015).

    Article  Google Scholar 

  15. Z. Li and L.M. Peng, Mater. Lett. 62, 2229 (2008).

    Article  Google Scholar 

  16. J.H. Schneibel, R.O. Ritchie, J.J. Kruzik, and P.F. Tortorelli, Metallurg. Mater. Trans. A 36A, 525 (2005).

    Article  Google Scholar 

  17. C. Rockett, M.S. Thesis, Georgia Institute of Technology, USA (2007).

  18. M.R. Middlemas, Ph.D. Thesis, pp. 66-68, Georgia Institute of Technology, USA (2009).

  19. J.M. Byun, S.H. Hwang, S. Lee, M.J. Suk, S.T. Oh, and Y.D. Kim, Int. J. Refract. Met. Hard Mater. 53, 61 (2015).

    Article  Google Scholar 

  20. T. Takahashi and H. Itoh, J. Less Common Met. 38, 211 (1972).

    Article  Google Scholar 

  21. G.F. Bastin and H.J.M. Heijigers Mikrochim. Acta, 19 (1992).

  22. J.M. Byun, S.-R. Bang, W.J. Choi, M.S. Kim and Y.D. Kim, Hanyang University, Seoul, unpublished research, 2016.

  23. W. Li, G. Zhang, S. Wang, B. Li, and J. Sun, J. Alloys Comp. 642, 34 (2015).

    Article  Google Scholar 

  24. J. Meyer, M.S. Thesis, pp. 8-19, Iowa State University, USA (2013).

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A1A03013422). And this research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01057689).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Do Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Byun, J.M., Choi, W.J., Bang, SR. et al. Fabrication of Ta2O5 Dispersion-Strengthened Mo-Si-B Alloy by Powder Metallurgical Method. JOM 69, 683–688 (2017). https://doi.org/10.1007/s11837-016-2243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2243-0

Keywords

  • Fracture Toughness
  • Intermetallic Compound
  • TaCl5
  • Vickers Hardness
  • Sintered Body