Skip to main content

Effect of Hypoeutectic Boron Additions on the Grain Size and Mechanical Properties of Ti-6Al-4V Manufactured with Powder Bed Electron Beam Additive Manufacturing

Abstract

In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricated Ti-6Al-4V + B indicate that the addition of 0.25–1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. D. Cormier, H. West, O. Harrysson, and K. Knowlson, Sol. Freeform Fabric. Symp. 2, 440 (2004).

    Google Scholar 

  2. L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, and R.B. Wicker, Mater. Charact. 60, 96 (2009).

    Article  Google Scholar 

  3. L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, and R.B. Wicker, J. Mech. Behav. Biomed. 2, 20 (2009).

    Article  Google Scholar 

  4. H.K. Rafi, N.V. Karthik, H. Gong, T.L. Starr, and B.E. Stucker, J. Mater. Eng. Perform. 22, 3872 (2013).

    Article  Google Scholar 

  5. A.A. Antonysamy, J. Meyer, and P.B. Prangnell, Mater. Charact. 84, 153 (2013).

    Article  Google Scholar 

  6. L. Ladani, J. Razmi, and S.F. Choudhury, J. Eng. Mater-T. ASME 136, 031006 (2014).

    Article  Google Scholar 

  7. M. Seifi, M. Dahar, R. Aman, O. Harrysson, J. Beuth, and J. Lewandowski, J. Mater. 67, 597 (2015).

    Google Scholar 

  8. A. Safdar, L.Y. Wei, A. Snis, and Z. Lai, Mater. Charact. 65, 8 (2012).

    Article  Google Scholar 

  9. N. Hrabe and T. Quinn, Mater. Sci. Eng. 573, 264 (2013).

    Article  Google Scholar 

  10. N. Hrabe and T. Quinn, Mater. Sci. Eng. 573, 271 (2013).

    Article  Google Scholar 

  11. H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Addit. Manuf. 10, 47 (2016).

    Article  Google Scholar 

  12. W.J. Sames, K.A. Unocic, R.R. Dehoff, T. Lolla, and S.S. Babu, J. Mater. Res. 29, 1920 (2014).

    Article  Google Scholar 

  13. H.E. Helmer, C. Körner, and R.F. Singer, J. Mater. Res. 29, 1987 (2014).

    Article  Google Scholar 

  14. P.A. Kobryn and S.L. Semiatin, J. Mater. Process. Technol. 135, 330 (2003).

    Article  Google Scholar 

  15. N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, and S.S. Babu, Acta Mater. 112, 303 (2016).

    Article  Google Scholar 

  16. S. Roy, S. Suwas, S. Tamirisakandala, D.B. Miracle, and R. Srinivasan, Acta Mater. 59, 5494 (2011).

    Article  Google Scholar 

  17. J. Zhu, A. Kamiya, T. Yamada, W. Shi, and K. Naganuma, Mater. Sci. Eng. 339, 53 (2003).

    Article  Google Scholar 

  18. S. Tamirisakandala, R.B. Bhat, D.J. McEldowney, and D.B. Miracle, TMS 28, 185 (2003).

    Google Scholar 

  19. S. Tamirisakandala, R.B. Bhat, J.S. Tiley, and D.B. Miracle, Scr. Mater. 53, 1421 (2005).

    Article  Google Scholar 

  20. I. Sen, S. Tamirisakandala, D.B. Miracle, and U. Ramamurty, Acta Mater. 55, 4983 (2007).

    Article  Google Scholar 

  21. J.H. Luan, Z.B. Jiao, L. Heatherly, E.P. George, G. Chen, and C.T. Liu, Scr. Mater. 100, 90 (2015).

    Article  Google Scholar 

  22. O. Ivasishin, R. Teliovych, and V. Ivan, Metall. Mater. Trans. 39, 402 (2008).

    Article  Google Scholar 

  23. I. Sen, K. Gopinath, R. Datta, and U. Ramamurty, Acta Mater. 58, 6799 (2010).

    Article  Google Scholar 

  24. I. Sen and U. Ramamurty, Scr. Mater. 62, 37 (2010).

    Article  Google Scholar 

  25. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).

    Article  Google Scholar 

  26. O. Cansizoglu, O.L.A. Harrysson, D. Cormier, and H. West, Mater. Sci. Eng. 492, 468 (2008).

    Article  Google Scholar 

  27. T.J. Horn and O.L.A. Harrysson, Sci. Prog. 95, 255 (2012).

    Article  Google Scholar 

  28. S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd, Metall. Mater. Trans. 41, 3422 (2010).

    Article  Google Scholar 

  29. J.H. Luan, Z.B. Jiao, G. Chen, and C.T. Liu, J. Alloy. Compd. 602, 235 (2014).

    Article  Google Scholar 

  30. D.J. McEldowney, S. Tamirisakandala, and D.B. Miracle, Metall. Mater. Trans. 41, 1003 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors declare that they have no conflict of interest. This work was funded by the Center for Additive Manufacturing and Logistics. The authors wish to thank ATI Specialty Materials for providing the materials used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Horn.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahbooba, Z., West, H., Harrysson, O. et al. Effect of Hypoeutectic Boron Additions on the Grain Size and Mechanical Properties of Ti-6Al-4V Manufactured with Powder Bed Electron Beam Additive Manufacturing. JOM 69, 472–478 (2017). https://doi.org/10.1007/s11837-016-2210-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2210-9

Keywords

  • Boron
  • Ultimate Tensile Strength
  • Additive Manufacturing
  • Boron Concentration
  • Electron Beam Melting