Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration

The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    R.C. Ewing, Mineral. Mag. 75, 2359 (2011).

    Article  Google Scholar 

  2. 2.

    C.A. Bell, S.V. Smith, M.R. Whittaker, A.K. Whittaker, L.R. Gahan, and M.J. Monteiro, Adv. Mater. 18, 582 (2006).

    Article  Google Scholar 

  3. 3.

    S.D.l Topel, E.P. Legaria, C. Tiseanu, J. Rocha, J.M. Nedelec, V.G. Kessler, and G.A. Seisenbaeva, J. Nanopart. Res. 16, 2783 (2014).

  4. 4.

    W. Yan, M.A.V. Ramos, B.E. Koel, and W.X. Zhang, J. Phys. Chem. C. 116, 5303 (2012).

  5. 5.

    S.M. Ponder, J.G. Darab, and T.E. Mallouk, Environ. Sci. Technol. 34, 2564 (2000).

    Article  Google Scholar 

  6. 6.

    Y.Q. Liu, H. Choi, D. Dionysiou, and G.V. Lowry, Chem. Mater. 17, 5315 (2005).

    Article  Google Scholar 

  7. 7.

    X.Q. Li and W.X. Zhang, J. Phys. Chem. C 111, 6939 (2007).

    Article  Google Scholar 

  8. 8.

    S.E. Hunyadi Murph, K. Heroux, C. Turick, and D. Thomas, Nanomaterials and Nanostructures 4, ed. J.N. Govil, (Houston: Studium Press LLC, 2012), pp 97–133.

  9. 9.

    S.E. Hunyadi Murph, S.Serkiz, E. Fox, H. Colon-Mercado, L. Sexton, and M. Siegfried, Fluorine-Related Nanoscience with Energy Applications 1064, eds. D.J. Nelson, C.N. Brammer (London: Oxford University Press, 2011), pp. 127–163.

  10. 10.

    G. Larsen, W. Farr, and S.E. Hunyadi Murph, J. Phys. Chem. C. 120. 15162 (2016).

  11. 11.

    X. Li, Langmuir 22, 4638 (2006).

    Article  Google Scholar 

  12. 12.

    H. Wang, Dalton Trans. 40, 559 (2011).

    Article  Google Scholar 

  13. 13.

    S.E. Hunyadi Murph, and C.J. Murphy, J. Nanoparticle Res. 15, 1607 (2013).

  14. 14.

    S.E. Hunyadi Murph, C.J. Murphy, H. Colon-Mercado, R. Torres, K. Heroux, E. Fox, L. Thompson, and R. Haasch, J. Nanopart. Res. 13, 6347 (2011).

    Article  Google Scholar 

  15. 15.

    M. Kar, Langmuir 27, 12124 (2011).

    Article  Google Scholar 

  16. 16.

    P. Korinko, and S.E. Hunyadi Murph,, Characterization of Minerals, Metals and Materials, eds. J.S. Carpenter, C. Bai, J.P. Escobedo, J.Y. Hwang, S. Ikhmayies, B. Li, J. Li, S.N. Monteiro, Z. Peng, and M. Zhang (Hoboken: Wiley, 2015), pp. 201–208.

  17. 17.

    C.J. Murphy, A.M. Gole, S.E. Hunyadi, J.W. Stone, P.N. Sisco, A. Alkilany, B.E. Kinard, and P. Hankins, Chem. Commun. 4, 554 (2008).

    Google Scholar 

  18. 18.

    I. Urban, N.M. Ratcliffe, J.R. Duffield, G.R. Elderb, and D. Pattona, Chem. Commun. 46, 4583 (2010).

    Article  Google Scholar 

  19. 19.

    C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, and T. Li, J. Phys. Chem. B 109, 13857 (2005).

    Article  Google Scholar 

  20. 20.

    P. Etcheverry, J.C. Wallingford, D.D. Miller, and R.P. Glahn, J. Agric. Food Chem. 50, 6287 (2002).

    Article  Google Scholar 

  21. 21.

    I. Sato and S.J. Tsuda, Vet. Med. Sci. 70, 213 (2008).

    Article  Google Scholar 

  22. 22.

    J.M. Fitzsimmons and L. Mausner, Appl. Radiat. Isot. 101, 60 (2015).

    Article  Google Scholar 

  23. 23.

    D.G. Medvedev, L.F. Mausner, G.E. Meinken, and S.O. Kurzak, J. Radioanal. Nucl. Chem. 280, 137 (2009).

    Article  Google Scholar 

  24. 24.

    P.S. Korinko and M.H. Tosten, JFAP 13, 389 (2013).

    Article  Google Scholar 

  25. 25.

    P.S. Korinko, A.J. Duncan, and K.J. Stoner, JFAP 14, 113 (2014).

    Article  Google Scholar 

  26. 26.

    G. Lucconi, G. Cicoria, D. Pancaldi, C. Malizia, and M. Marengo, Appl. Radiat. Isot. 70, 1590 (2012).

    Article  Google Scholar 

  27. 27.

    I. Sato and S. Tsuda, J. Vet. Med. Sci. 7, 213 (2008).

    Article  Google Scholar 

  28. 28.

    S.E. Hunyadi Murph, C.J. Murphy, A. Leach, and K. Gall, Cryst. Growth Des. 15, 1968 (2015).

    Article  Google Scholar 

  29. 29.

    J.R. Polte, T.T. Ahner, F. Delissen, S. Sokolov, F. Emmerling, A.F. Thünemann, and R. Kraehnert, J. Am. Chem. Soc. 132, 1296 (2010).

    Article  Google Scholar 

  30. 30.

    J. Polte, J. Cryst. Eng. Commun. 17, 6809 (2015).

    Article  Google Scholar 

  31. 31.

    M. Wuithschick, A. Birnbaum, S. Witte, M. Sztucki, U. Vainio, N. Pinna, K. Rademann, F. Emmerling, R. Kraehnert, and J.R. Polte, ACS Nano 9, 7052 (2015).

    Article  Google Scholar 

  32. 32.

    B.K. Min, W.T. Wallace, A.K. Santra, and D.W. Goodman, Phys. Chem. B 108, 16339 (2004).

    Article  Google Scholar 

  33. 33.

    Z. Ma and S. Dai Heterogeneous Gold Catalysts and Catalysis, ed. Z. Ma and S. Dai (Cambridge: Royal Society of Chemistry, 2014), pp. 1–26.

  34. 34.

    D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys (London: Chapman & Hall, 1981).

    Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge Savannah River Tritium Enterprise for providing funding for this work under Contract DE-AC09-08SR22470.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simona E. Hunyadi Murph.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murph, S.E.H., Larsen, G.K., Korinko, P. et al. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration. JOM 69, 162–172 (2017). https://doi.org/10.1007/s11837-016-2206-5

Download citation

Keywords

  • Gold Nanoparticles
  • Inductively Couple Plasma Mass Spectroscopy
  • Inductively Couple Plasma Mass Spectroscopy
  • Zinc Vapor
  • Stainless Steel Coupon