, Volume 69, Issue 2, pp 198–206 | Cite as

Correlations Among Void Shape Distributions, Dynamic Damage Mode, and Loading Kinetics

  • A. D. BrownEmail author
  • Q. Pham
  • E. V. Fortin
  • P. Peralta
  • B. M. Patterson
  • J. P. Escobedo
  • E. K. Cerreta
  • S. N. Luo
  • D. Dennis-Koller
  • D. Byler
  • A. Koskelo
  • X. Xiao


Three-dimensional x-ray tomography (XRT) provides a nondestructive technique to characterize the size, shape, and location of damage in dynamically loaded metals. A shape-fitting method comprising the inertia tensors of individual damage sites was applied to study differences of spall damage development in face-centered-cubic (FCC) and hexagonal-closed-packed (HCP) multicrystals and for a suite of experiments on high-purity copper to examine the influence of loading kinetics on the spall damage process. Applying a volume-weighted average to the best-fit ellipsoidal aspect-ratios allows a quantitative assessment for determining the extent of damage coalescence present in a shocked metal. It was found that incipient transgranular HCP spall damage nucleates in a lenticular shape and is heavily oriented along particular crystallographic slip directions. In polycrystalline materials, shape distributions indicate that a decrease in the tensile loading rate leads to a transition to coalesced damage dominance and that the plastic processes driving void growth are time dependent.


Void Growth Damage Site Spall Strength Void Shape Spall Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research work was funded by LANL under LDRD #20060021DR and LDRD-DR #20100026 and by the Department of Energy; NNSA; under SSAA Grants #DE-FG52-06NA26169, DE-FG52-10NA29653, DE-NA0002005, and DE-NANA0002917; and APS General User Proposal 35561. The Los Alamos National Laboratory is operated by LANS, LLC, for the NNSA of the US Department of Energy under Contract DE-AC52-06NA25396. Eric Loomis, Pat Dickerson (LANL), Damian Swift (LLNL), David Wright, and Dallas Kingsbury (ASU) are thanked for their help during the various phases of the research work. Access to the TRIDENT Facility & Electron Microscopy Laboratory at LANL, Pavel Shevchenko at APS 2-BM, as well as the Center for High Resolution Electron Microscopy and the Mechanical Testing Laboratory at ASU is gratefully acknowledged.


  1. 1.
    D.R. Curran, L. Seaman, and D.A. Shockey, Phys. Rep. 147, 253 (1987).CrossRefGoogle Scholar
  2. 2.
    D.E. Grady, J. Mech. Phys. Solids 36, 353 (1988).CrossRefGoogle Scholar
  3. 3.
    M.A. Meyers, Dynamic Behavior of Materials (New York: Wiley, 1994), pp. 523–546.CrossRefzbMATHGoogle Scholar
  4. 4.
    R.W. Minich, J.U. Cazamias, M. Kumar, and A.J. Schwartz, Metall. Mater. Trans. A 35, 2263 (2004).CrossRefGoogle Scholar
  5. 5.
    B.L. Henrie, T.A. Mason, and J.F. Bingert, Am. Inst. Phys. Conf. Proc. 845, 627 (2005).Google Scholar
  6. 6.
    C. Czarnota, N. Jacques, S. Mercier, and A. Molinari, J. Mech. Phys. Solids 56, 1624 (2008).CrossRefGoogle Scholar
  7. 7.
    P. Peralta, S. DiGiacomo, S. Hashemian, S.N. Luo, D. Paisley, R. Dickerson, E. Loomis, K.J. McClellan, and H. D’Armas, Int. J. Damage Mech. 18, 393 (2009).CrossRefGoogle Scholar
  8. 8.
    L. Wayne, K. Krishnan, S. DiGiacomo, N. Kovvali, P. Peralta, S.N. Luo, S. Greenfield, D. Byler, D. Paisley, K.J. McClellan, and A. Koskelo, Scr. Mater. 63, 1065 (2010).CrossRefGoogle Scholar
  9. 9.
    A.D. Brown, K. Krishnan, L. Wayne, P. Peralta, S.N. Luo, D. Byler, and B.M. Patterson, ASME 2013 Int. Mechanical Engineering Congress and Exposition IMECE2013-65642, V009T10A033 (San Diego, CA, 2013).Google Scholar
  10. 10.
    A.D. Brown, L. Wayne, Q. Pham, K. Krishnan, P. Peralta, S.N. Luo, B.M. Patterson, S. Greenfield, D. Byler, K.J. McClellan, and A. Koskelo, Metall. Mater. Trans. A 46, 4539 (2015).CrossRefGoogle Scholar
  11. 11.
    J.P. Escobedo, D. Dennis-Koller, E.K. Cerreta, B.M. Patterson, C.A. Bronkhurst, D. Tonks, and R.A. Lebensohn, J. Appl. Phys. 110, 033513 (2011).CrossRefGoogle Scholar
  12. 12.
    E.K. Cerreta, J.P. Escobedo, A. Perez-Bergquist, D.D. Koller, C.P. Trujillo, G.T. Gray III, C. Brandl, and T.C. Germann, Scr. Mater. 66, 638 (2012).CrossRefGoogle Scholar
  13. 13.
    J.P. Escobedo, E.K. Cerreta, and D. Dennis-Koller, JOM 66, 156 (2014).CrossRefGoogle Scholar
  14. 14.
    K. Krishnan, A.D. Brown, L. Wayne, J. Vo, S. Opie, H. Lim, P. Peralta, S.N. Luo, D. Byler, K.J. McClellan, and A. Koskelo, Metall. Mater. Trans. A 46, 4527 (2015).CrossRefGoogle Scholar
  15. 15.
    S.J. Fensin, J.P. Escobedo-Diaz, C. Brandl, E.K. Cerreta, G.T. Gray, T.C. Germann, and S.M. Valone, Acta Mater. 64, 113 (2014).CrossRefGoogle Scholar
  16. 16.
    P. Peralta, E. Loomis, Y. Chen, A.D. Brown, R. McDonald, K. Krishnan, and H. Lim, Philos. Mag. Lett. 95, 67 (2015).CrossRefGoogle Scholar
  17. 17.
    E.J. Lieberman, R.A. Lebensohn, D.B. Menasche, C.A. Bronkhurst, and A.D. Rollett, Acta Mater. 116, 270 (2016).CrossRefGoogle Scholar
  18. 18.
    A.D. Brown, Q. Pham, P. Peralta, S.N. Luo, B.M. Patterson, D. Byler, A. Koskelo, and X. Xiao, J. Dyn. Behav. Mater. 1, 388 (2015).CrossRefGoogle Scholar
  19. 19.
    A.D. Brown, Q. Pham, P. Peralta, B.M. Patterson, J.P. Escobedo, S.N. Luo, D. Dennis-Koller, E.K. Cerreta, D. Byler, A. Koskelo, and X. Xiao, Charact. Minerals, Metals, Mater. 2016, 57 (2016).Google Scholar
  20. 20.
    D. Dennis-Koller, J.P. Escobedo, E.K. Cerreta, C.A. Bronkhurst, B. Hansen, R. Lebensohn, H. Mourad, B.M. Patterson, and D. Tonks, EPJ Web Conf. 29, 02008 (2012).Google Scholar
  21. 21.
    J.P. Escobedo, E.K. Cerreta, D. Dennis-Koller, B.M. Patterson, and C.A. Bronkhurst, J. Phys. Conf. Ser. 500, 112023 (2014).CrossRefGoogle Scholar
  22. 22.
    Y. Yang, Z. Peng, Z. Guo, S. Luo, T. Tang, H. Hu, and Q. Zhang, Metall. Mater. Trans. A 46, 4070 (2015).CrossRefGoogle Scholar
  23. 23.
    Y. Yang, P. Zhi-qiang, C. Xing-zhi, G. Zhao-liang, T. Tie-gang, H. Hai-bo, and Z. Ming-ming, Mater. Sci. Eng. A 651, 636 (2016).CrossRefGoogle Scholar
  24. 24.
    P.J. Hazell, G.J. Appleby-Thomas, E. Wielewski, and J.P. Escobedo, Philos. Trans. R. Soc. A 372, 20130204 (2014).CrossRefGoogle Scholar
  25. 25.
    X. Boidin, P. Chevrier, J.R. Klepaczko, and H. Sabar, Int. J. Solids Struct. 43, 4595 (2006).CrossRefGoogle Scholar
  26. 26.
    C. Tyler, J.C. Millett, and N.K. Bourne, Shock Compress. Condens. Matter 845, 674 (2006).CrossRefGoogle Scholar
  27. 27.
    S.A. McDonald, M. Cotton, N.K. Bourne, J.C. Millett, and P.J. Withers, Shock Compress. Condens. Matter 1426, 1065 (2011).Google Scholar
  28. 28.
    R. Yu, F. Wang, C. Tan, S. Wang, X. Yu, J. Jiang, H. Ma, and H. Cai, Mater. Sci. Eng. A 578, 247 (2013).CrossRefGoogle Scholar
  29. 29.
    D. Paisley, S.N. Luo, D.C. Swift, S. Greenfield, E. Loomis, R. Johnson, P. Peralta, A. Koskelo, and D. Tonks, Shock Compress. Condens. Matter 955, 1337 (2007).Google Scholar
  30. 30.
    B.M. Patterson, J.P. Escobedo, D. Dennis-Koller, and E.K. Cerreta, Microsc. Microanal. 18, 390 (2012).CrossRefGoogle Scholar
  31. 31.
    L. Wang, Y.J. Park, and Y. Fu, Constr. Build. Mater. 21, 338 (2007).CrossRefGoogle Scholar
  32. 32.
    Avizo 8 Reference Guide, FEI© (2013).Google Scholar
  33. 33.
    A.L. Stevens, L. Davison, and W.E. Warren, J. Appl. Phys. 43, 4922 (1972).CrossRefGoogle Scholar
  34. 34.
    H. Trumel, F. Hild, G. Roy, Y.P. Pellegrini, and C. Denoual, J. Mech. Phys. Solids 57, 1980 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • A. D. Brown
    • 1
    Email author
  • Q. Pham
    • 2
  • E. V. Fortin
    • 2
  • P. Peralta
    • 2
  • B. M. Patterson
    • 3
  • J. P. Escobedo
    • 1
  • E. K. Cerreta
    • 3
  • S. N. Luo
    • 4
  • D. Dennis-Koller
    • 3
  • D. Byler
    • 3
  • A. Koskelo
    • 3
  • X. Xiao
    • 5
  1. 1.School of Engineering and Information TechnologyUniversity of New South WalesCanberraAustralia
  2. 2.Arizona State UniversityTempeUSA
  3. 3.Los Alamos National LaboratoryLos AlamosUSA
  4. 4.Peac Institute of Multiscale SciencesChengduPeople’s Republic of China
  5. 5.Argonne National LaboratoryLemontUSA

Personalised recommendations