In Situ TEM Scratch Testing of Perpendicular Magnetic Recording Multilayers with a Novel MEMS Tribometer

Abstract

Utilizing a newly developed two-dimensional (2D) transducer designed for in situ transmission electron microscope (TEM) nanotribology, deformation mechanisms of a perpendicular magnetic recording film stack under scratch loading conditions were evaluated. These types of films are widely utilized in storage devices, and loss of data by grain reorientation in the recording layers is of interest. The observed deformation was characterized by a stick–slip mechanism, which was induced by a critical ratio of lateral to normal force regardless of normal force. At low applied normal forces, the diamond-like carbon (DLC) coating and asperities in the recording layer were removed during scratching, while, at higher applied forces, grain reorientation and debonding of the recording layer was observed. As the normal force and displacement were increased, work for stick–slip deformation and contact stress were found to increase based upon an Archard’s Law analysis. These experiments also served as an initial case study demonstrating the capabilities of this new transducer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Z.W. Shan, G. Adesso, A. Cabot, M.P. Sherburne, S.A.S. Asif, O.L. Warren, D.C. Chrzan, A.M. Minor, and A.P. Alivisatos, Nat. Mater. 7, 947 (2008).

    Article  Google Scholar 

  2. 2.

    C.E. Carlton and P.J. Ferreira, Micron 43, 1134 (2012).

    Article  Google Scholar 

  3. 3.

    I. Issa, J. Amodeo, J. Réthoré, L. Joly-Pottuz, C. Esnouf, J. Morthomas, M. Perez, J. Chevalier, and K. Masenelli-Varlot, Acta Mater. 86, 295 (2015).

    Article  Google Scholar 

  4. 4.

    A.J. Wagner, E.D. Hintsala, P. Kumar, W.W. Gerberich, and K.A. Mkhoyan, Acta Mater. 100, 256 (2015).

    Article  Google Scholar 

  5. 5.

    Y. Lu, J. Song, J.Y. Huang, and J. Lou, Adv. Funct. Mater. 21, 3982 (2011).

    Article  Google Scholar 

  6. 6.

    B. Chen, J. Wang, Q. Gao, Y. Chen, X. Liao, C. Lu, H.H. Tan, Y.W. Mai, J. Zou, S.P. Ringer, and H. Gao, Nano Lett. 13, 4369 (2013).

    Article  Google Scholar 

  7. 7.

    H. Idrissi, C. Bollinger, F. Boioli, D. Schryvers, and P. Cordier, Sci. Adv. 2, E1501671 (2016).

    Article  Google Scholar 

  8. 8.

    D. Kiener and A.M. Minor, Acta Mater. 59, 1328 (2011).

    Article  Google Scholar 

  9. 9.

    Y. Kim, S. Lee, J.B. Jeon, Y.J. Kim, B.J. Lee, S.H. Oh, and S.M. Han, Scr. Mater. 107, 5 (2015).

    Article  Google Scholar 

  10. 10.

    A.M. Minor, J.W. Morris Jr, and E.A. Stach, Appl. Phys. Lett. 79, 1625 (2001).

    Article  Google Scholar 

  11. 11.

    M.S. Bobji, J.B. Pethica, and B.J. Inkson, J. Mater. Res. 20, 2726 (2005).

    Article  Google Scholar 

  12. 12.

    H.D. Espinosa, B.C. Prorok, and B. Peng, J. Mech. Phys. Sol. 52, 667 (2004).

    Article  Google Scholar 

  13. 13.

    N. Li, N.A. Mara, J. Wang, P. Dickerson, J.Y. Huang, and A. Misra, Scr. Mater. 67, 479 (2012).

    Article  Google Scholar 

  14. 14.

    C. Mayer, N. Li, N. Mara, and N. Chawla, Mater. Sci. Eng. A 621, 229 (2015).

    Article  Google Scholar 

  15. 15.

    S. Fujisawa and T. Kizuka, Tribol. Lett. 15, 163 (2003).

    Article  Google Scholar 

  16. 16.

    A.P. Merkle and L.D. Marks, Wear 265, 1864 (2008).

    Article  Google Scholar 

  17. 17.

    T.D. Jacobs and R.W. Carpick, Nat. Nanotechnol. 8, 108 (2013).

    Article  Google Scholar 

  18. 18.

    T.D. Jacobs, J.A. Lefever, and R.W. Carpick, Adv. Mater. Interfaces 2, (2015).

  19. 19.

    A.P. Merkle, A. Erdemir, O.L. Eryilmaz, J.A. Johnson, and L.D. Marks, Carbon 48, 587 (2010).

    Article  Google Scholar 

  20. 20.

    I. Lahouij, F. Dassenoy, L. de Knoop, J.M. Martin, and B. Vacher, Tribol. Lett. 42, 133 (2011).

    Article  Google Scholar 

  21. 21.

    Z.P. Luo, G.P. Zhang, and R. Schwaiger, Scr. Mater. 107, 67 (2015).

    Article  Google Scholar 

  22. 22.

    M. Suk and D. Jen, IEEE Trans. Magn. 34, 1711 (1998).

    Article  Google Scholar 

  23. 23.

    S.C. Lee, S.Y. Hong, N.Y. Kim, J. Ferber, X. Che, and B.D. Strom, J. Tribol. 131, 011904 (2009).

    Article  Google Scholar 

  24. 24.

    C. Donnet and A. Erdemir, eds., Tribology of Diamond-Like Carbon Films: Fundamentals and Applications (Berlin: Springer, 2007).

    Google Scholar 

  25. 25.

    E.D. Hintsala, S.A.S. Asif, and D.D. Stauffer, MRS Adv. 1, 799 (2016).

    Article  Google Scholar 

  26. 26.

    P.J. Burnett and D.S. Rickerby, Thin Solid Films 157, 233 (1988).

    Article  Google Scholar 

  27. 27.

    J.F. Archard, J. Appl. Phys. 24, 981 (1953).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge their anonymous collaborators in the hard disc drive industry for providing the samples with which this work was done.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric D. Hintsala.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hintsala, E.D., Stauffer, D.D., Oh, Y. et al. In Situ TEM Scratch Testing of Perpendicular Magnetic Recording Multilayers with a Novel MEMS Tribometer. JOM 69, 51–56 (2017). https://doi.org/10.1007/s11837-016-2154-0

Download citation

Keywords

  • Hard Disc Drive
  • Piezo Actuation
  • Asperity Height
  • Comb Drive
  • Recording Layer