Advertisement

JOM

, Volume 69, Issue 1, pp 51–56 | Cite as

In Situ TEM Scratch Testing of Perpendicular Magnetic Recording Multilayers with a Novel MEMS Tribometer

  • Eric D. HintsalaEmail author
  • Douglas D. Stauffer
  • Yunje Oh
  • S. A. Syed Asif
Article

Abstract

Utilizing a newly developed two-dimensional (2D) transducer designed for in situ transmission electron microscope (TEM) nanotribology, deformation mechanisms of a perpendicular magnetic recording film stack under scratch loading conditions were evaluated. These types of films are widely utilized in storage devices, and loss of data by grain reorientation in the recording layers is of interest. The observed deformation was characterized by a stick–slip mechanism, which was induced by a critical ratio of lateral to normal force regardless of normal force. At low applied normal forces, the diamond-like carbon (DLC) coating and asperities in the recording layer were removed during scratching, while, at higher applied forces, grain reorientation and debonding of the recording layer was observed. As the normal force and displacement were increased, work for stick–slip deformation and contact stress were found to increase based upon an Archard’s Law analysis. These experiments also served as an initial case study demonstrating the capabilities of this new transducer.

Keywords

Hard Disc Drive Piezo Actuation Asperity Height Comb Drive Recording Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge their anonymous collaborators in the hard disc drive industry for providing the samples with which this work was done.

Supplementary material

11837_2016_2154_MOESM1_ESM.mp4 (9.6 mb)
Supplementary material 1 (MP4 9836 kb)
11837_2016_2154_MOESM2_ESM.mp4 (6.8 mb)
Supplementary material 2 (MP4 6916 kb)

References

  1. 1.
    Z.W. Shan, G. Adesso, A. Cabot, M.P. Sherburne, S.A.S. Asif, O.L. Warren, D.C. Chrzan, A.M. Minor, and A.P. Alivisatos, Nat. Mater. 7, 947 (2008).CrossRefGoogle Scholar
  2. 2.
    C.E. Carlton and P.J. Ferreira, Micron 43, 1134 (2012).CrossRefGoogle Scholar
  3. 3.
    I. Issa, J. Amodeo, J. Réthoré, L. Joly-Pottuz, C. Esnouf, J. Morthomas, M. Perez, J. Chevalier, and K. Masenelli-Varlot, Acta Mater. 86, 295 (2015).CrossRefGoogle Scholar
  4. 4.
    A.J. Wagner, E.D. Hintsala, P. Kumar, W.W. Gerberich, and K.A. Mkhoyan, Acta Mater. 100, 256 (2015).CrossRefGoogle Scholar
  5. 5.
    Y. Lu, J. Song, J.Y. Huang, and J. Lou, Adv. Funct. Mater. 21, 3982 (2011).CrossRefGoogle Scholar
  6. 6.
    B. Chen, J. Wang, Q. Gao, Y. Chen, X. Liao, C. Lu, H.H. Tan, Y.W. Mai, J. Zou, S.P. Ringer, and H. Gao, Nano Lett. 13, 4369 (2013).CrossRefGoogle Scholar
  7. 7.
    H. Idrissi, C. Bollinger, F. Boioli, D. Schryvers, and P. Cordier, Sci. Adv. 2, E1501671 (2016).CrossRefGoogle Scholar
  8. 8.
    D. Kiener and A.M. Minor, Acta Mater. 59, 1328 (2011).CrossRefGoogle Scholar
  9. 9.
    Y. Kim, S. Lee, J.B. Jeon, Y.J. Kim, B.J. Lee, S.H. Oh, and S.M. Han, Scr. Mater. 107, 5 (2015).CrossRefGoogle Scholar
  10. 10.
    A.M. Minor, J.W. Morris Jr, and E.A. Stach, Appl. Phys. Lett. 79, 1625 (2001).CrossRefGoogle Scholar
  11. 11.
    M.S. Bobji, J.B. Pethica, and B.J. Inkson, J. Mater. Res. 20, 2726 (2005).CrossRefGoogle Scholar
  12. 12.
    H.D. Espinosa, B.C. Prorok, and B. Peng, J. Mech. Phys. Sol. 52, 667 (2004).CrossRefGoogle Scholar
  13. 13.
    N. Li, N.A. Mara, J. Wang, P. Dickerson, J.Y. Huang, and A. Misra, Scr. Mater. 67, 479 (2012).CrossRefGoogle Scholar
  14. 14.
    C. Mayer, N. Li, N. Mara, and N. Chawla, Mater. Sci. Eng. A 621, 229 (2015).CrossRefGoogle Scholar
  15. 15.
    S. Fujisawa and T. Kizuka, Tribol. Lett. 15, 163 (2003).CrossRefGoogle Scholar
  16. 16.
    A.P. Merkle and L.D. Marks, Wear 265, 1864 (2008).CrossRefGoogle Scholar
  17. 17.
    T.D. Jacobs and R.W. Carpick, Nat. Nanotechnol. 8, 108 (2013).CrossRefGoogle Scholar
  18. 18.
    T.D. Jacobs, J.A. Lefever, and R.W. Carpick, Adv. Mater. Interfaces 2, (2015). Google Scholar
  19. 19.
    A.P. Merkle, A. Erdemir, O.L. Eryilmaz, J.A. Johnson, and L.D. Marks, Carbon 48, 587 (2010).CrossRefGoogle Scholar
  20. 20.
    I. Lahouij, F. Dassenoy, L. de Knoop, J.M. Martin, and B. Vacher, Tribol. Lett. 42, 133 (2011).CrossRefGoogle Scholar
  21. 21.
    Z.P. Luo, G.P. Zhang, and R. Schwaiger, Scr. Mater. 107, 67 (2015).CrossRefGoogle Scholar
  22. 22.
    M. Suk and D. Jen, IEEE Trans. Magn. 34, 1711 (1998).CrossRefGoogle Scholar
  23. 23.
    S.C. Lee, S.Y. Hong, N.Y. Kim, J. Ferber, X. Che, and B.D. Strom, J. Tribol. 131, 011904 (2009).CrossRefGoogle Scholar
  24. 24.
    C. Donnet and A. Erdemir, eds., Tribology of Diamond-Like Carbon Films: Fundamentals and Applications (Berlin: Springer, 2007).Google Scholar
  25. 25.
    E.D. Hintsala, S.A.S. Asif, and D.D. Stauffer, MRS Adv. 1, 799 (2016).CrossRefGoogle Scholar
  26. 26.
    P.J. Burnett and D.S. Rickerby, Thin Solid Films 157, 233 (1988).CrossRefGoogle Scholar
  27. 27.
    J.F. Archard, J. Appl. Phys. 24, 981 (1953).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Eric D. Hintsala
    • 1
    Email author
  • Douglas D. Stauffer
    • 1
  • Yunje Oh
    • 1
  • S. A. Syed Asif
    • 1
  1. 1.Hysitron, IncorporatedEden PrairieUSA

Personalised recommendations