Skip to main content
Log in

Evolution of the Busbar Structure in Large-Scale Aluminum Reduction Cells

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Studies of magnetic field and magneto-hydro-dynamics are regarded as the foundation for the development of large-scale aluminum reduction cells, while due to the direct relationship between the busbar configuration and magnetic compensation, the actual key content is the configuration of the busbar. As the line current has been increased from 160 kA to 600 kA, the configuration of the busbar was becoming more complex. To summarize and explore the evolution of busbar configuration in aluminum reduction cells, this paper has reviewed various representative large-scale pre-baked aluminum reduction cell busbar structures, such as end-to-end potlines, side-by-side potlines and external compensation current. The advantages and disadvantages in the magnetic distribution or technical specifications have also been introduced separately, especially for the configurations of the mainstream 400-kA potlines. In the end, the development trends of the bus structure configuration were prospected, based on the recent successful applications of super-scale cell busbar structures in China (500–600 kA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.X. Liu and J. Li, Modern Aluminum Electrolysis (Beijing: Metallurgical Industry Press, 2008).

    Google Scholar 

  2. S.H. Yao and Z.H. He, Light Metals 1990, ed. M.B. Christian (Warrendale, PA: TMS, 1990), pp. 453–458.

    Google Scholar 

  3. T. Tvedt and H.G. Nebell, Light Metals 1988, ed. L.G. Boxall (Warrendale, PA: TMS, 1988), pp. 567–573.

    Google Scholar 

  4. J. Li, W. Liu, Y.Q. Lai, and Y.X. Liu, JOM 60, 58 (2008).

    Article  Google Scholar 

  5. A. Gusev, V. Kriuokovsky, and L. Krylov, Light Metals 2004, ed. A.T. Tabereaux (Charlotte, NC: TMS, 2004), pp. 467–472.

    Google Scholar 

  6. M.F. El-Demerdash, A.A. Adly, S.E. Abu-Shady, and W. Ismail, Light Metals 2000, ed. T.A. Committee and R.D. Peterson (Nashville, TN: TMS, 2000), pp. 291–295.

    Google Scholar 

  7. V. Potocnik, Light Metals 1991, ed. E. Rooy (Warrendale, PA: TMS, 1991), pp. 1187–1193.

    Google Scholar 

  8. M. Dupuis and V. Bojarevics, Light Metals 2006, ed. T.J. Galloway (San Antonio, TX: TMS, 2006), pp. 341–346.

    Google Scholar 

  9. N. Urata, Light Metals 2005, ed. H. Kvande (San Francisco, CA: TMS, 2005), pp. 455–460.

    Google Scholar 

  10. M. Segatz, D. Vogelsang, C. Droste, and P. Baekler, Light Metals 1993, ed. S.K. Das (Denver, CO: TMS, 1993), pp. 361–368.

    Google Scholar 

  11. D. Vogelsang, I. Eick, and M. Segatz, Light Metals 1997, ed. R. Huglen (Warrendale, PA: TMS, 1997), pp. 233–238.

    Google Scholar 

  12. C. Droste, I. Eick, and M. Segatz, Light Metals 2003, ed. P.N. Crepeau (Warrendale, PA: TMS, 2003), pp. 367–371.

    Google Scholar 

  13. O. Martin, B. Allano, E. Barrioz, Y. Caratini, A. Escande, and N. Favel, Light Metals 2012, ed. C.E. Suarez (Orlando, FL: TMS, 2012), pp. 569–574.

    Google Scholar 

  14. Y.X. Liu, X.P. Li, Y.Q. Lai, and J. Li, Chin. J. Nonferrous. Met. 13, 1199 (2003).

    Google Scholar 

  15. J. Antille, U.S. Patent 5830335 (1998).

  16. M. Bugge, M. Koniar, K. Skladan, and M. Stas, Light Metals 2008, ed. D.H. DeYoung (New Orleans, LA: TMS, 2008), pp. 261–265.

    Google Scholar 

  17. W. Schmidt-Hatting and S.H. Wolfgang, U.S. Patent 4224127 (1980).

  18. P. Morel and J.P. Dugois, D.E. Patent 2653643 (1986).

  19. W. Schmidt-Hatting, U.S. Patent 3775281 (1973).

  20. C. Vanvoren, CIM Bull. 95, 96 (2002).

    Google Scholar 

  21. Q.F. Huo, Technology and Equipment of Aluminum Electrolysis Industry (Shenyang: Liaohai Press, 2002) (in Chinese).

    Google Scholar 

  22. R.F. Boivin, J.R. Huni, and V. Potocnik, U.S. Patent 4683047 (1987).

  23. E. Bosshard, O. Knaisch, W. Schmidt-Hatting, and J.M. Blanc, Light Metals 1983, ed. E.M. Adkins (Warrendale, PA: TMS, 1983), pp. 595–605.

    Google Scholar 

  24. E.L. Heaton and W. Porter, U.S. Patent 3415724 (1965).

  25. J.M. Blanc, U.S. Patent 4313811 (1982).

  26. P. Morel and J.P. Dugois, C.A. Patent 1061745 (1979).

  27. M. Keinborg, B. Langon, and J. Chaffy, U.S. Patent 4592821 (1986).

  28. J.M. Gaillard, J.C. de Verdiere, and P. Homsi, U.S. Patent 6551473 (2003).

  29. H.D. Mclellan and W.K. Armour, U.S. Patent 3616317 (1969).

  30. V. Pingin and V. Platonov. U.S. Patent 20080041718(A1) (2008).

  31. C.H. Yang, F.Y. Yan, T.T. Zhou, and X.T Han, China Patent 200510200741.5 (2006) (in Chinese).

  32. X.D. Yang, Y.F. Liu, D.F. Zhou, G.Z. Wang, Z.Y. Zou, Y.D. Yang, K.J. Sun, Y. Qiu, and J.M. Zhu, China Patent 200810229097.8 (2010) (in Chinese).

  33. D.X. Lv, Y.W. Wu, X.W. Qi, S.X. Ma, J.H. Mao, H. Dong, D.Q. Wang, J.X. Liu, N. Mao, and Y.J. Guan, U.S. Patent 20110067999(A1) (2010).

  34. J. Li, Y. Xu, H.L. Zhang, and Y. Lai, Int. J. Multiph. Flow 37, 46 (2010).

    Article  Google Scholar 

  35. M. Dupuis, V. Bojarevics, and J. Freilbergs, Light Metals 2004, ed. A.T. Tabereaux (Charlotte, NC: TMS, 2004), pp. 453–459.

    Google Scholar 

  36. M. Li and J.M. Zhou, J. Cent. South Univ. (Sci. Technol.) 15, 2 (2008).

    Google Scholar 

  37. M. Li and J.M. Zhou, Light Metals 2008, ed. D.H. DeYoung (New Orleans, LA: TMS, 2008), pp. 271–275.

    Google Scholar 

  38. W. Liu, D.F. Zhou, Y.F. Liu, M. Liu, and X.D. Yang, Light Metals 2015, ed. M. Hyland (Orlando, FL: TMS, 2015), pp. 479–482.

    Google Scholar 

  39. D.F. Zhou, X.D. Yang, M. Liu, and W. Liu, Light Metals 2015, ed. M. Hyland (Orlando, FL: TMS, 2015), pp. 483–487.

    Google Scholar 

  40. B.L. Gao, Light Metal Age (2016), pp. 29–33.

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (51574289, 61533020 and 51674300), the Project of Innovation-driven Plan in Central South University (2015CXS017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liang, J., Li, J. et al. Evolution of the Busbar Structure in Large-Scale Aluminum Reduction Cells. JOM 69, 307–314 (2017). https://doi.org/10.1007/s11837-016-2148-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2148-y

Keywords

Navigation