Integrated Computational Modeling of Water Side Corrosion in Zirconium Metal Clad Under Nominal LWR Operating Conditions

Abstract

A mesoscopic chemical reaction kinetics model to predict the formation of zirconium oxide and hydride accumulation light-water reactor (LWR) fuel clad is presented. The model is designed to include thermodynamic information from ab initio electronic structure methods as well as parametric information in terms of diffusion coefficients, thermal conductivities and reaction constants. In contrast to approaches where the experimentally observed time exponents are captured by the models by design, our approach is designed to be predictive and to provide an improved understanding of the corrosion process. We calculate the time evolution of the oxide/metal interface and evaluate the order of the chemical reactions that are conducive to a t 1/3 dependence. We also show calculations of hydrogen cluster accumulation as a function of temperature and depth using spatially dependent cluster dynamics. Strategies to further cohesively integrate the different elements of the model are provided.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    B. Cox, Advances in Corrosion Science and Technology (Berlin: Springer, 1976), p. 173.

    Google Scholar 

  2. 2.

    K. Forsberg, M. Limbäck, and A.R. Massih, Nucl. Eng. Des. 154, 157 (1995).

    Article  Google Scholar 

  3. 3.

    S. Kass, J. Nucl. Mater. 29, 315 (1969).

    Article  Google Scholar 

  4. 4.

    A.J.G. Maroto, R. Bordoni, M. Villegas, M.A. Blesa, A.M. Olmedo, A. Iglesias, and G. Rigotti, J. Nucl. Mater. 229, 79 (1996).

    Article  Google Scholar 

  5. 5.

    G.P. Sabol and S.B. Dalgaard, J. Electrochem. Soc. 122, 316 (1975).

    Article  Google Scholar 

  6. 6.

    T.R. Allen, R.J.M. Konings, and A.T. Motta, in Comprehensive Nuclear Materials, ed. J.M.K. Rudy (Oxford: Elsevier, 2012), pp. 49–68.

  7. 7.

    B.N.L. Srinivas, (Master of Science thesis, Department of Physics, Royal Institute of Technology, Stockholm, Sweden, 2012).

  8. 8.

    M. Kuroda, K. Yoshioka, S. Yamanaka, H. Anada, F. Nagase, and H. Uetsuka, J. Nucl. Sci. Technol. 37, 670 (2000).

    Article  Google Scholar 

  9. 9.

    K.E. Sickafus, H. Matzke, T. Hartmann, K. Yasuda, J.A. Valdez, P. Chodak III, M. Nastasi, and R.A. Verrall, J. Nucl. Mater. 274, 66 (1999).

    Article  Google Scholar 

  10. 10.

    R. Adamson, F. Garzarolli, B. Cox, A. Strasser, and P. Rudling, ZIRAT12 Special Topic Report (ANT International, Molnlycke, Sweden, 2007).

  11. 11.

    B. Cox, J. Nucl. Mater. 336, 331 (2005).

    Article  Google Scholar 

  12. 12.

    A. Varias and A. Massih, J. Nucl. Mater. 279, 273 (2000).

    Article  Google Scholar 

  13. 13.

    S.M. Allen and J.W. Cahn, Acta Metall. 27, 1085 (1979).

    Article  Google Scholar 

  14. 14.

    A. Van der Ven, J.C. Thomas, Q. Xu, and J. Bhattacharya, Math. Comput. Simul. 80, 1393 (2010).

    Article  Google Scholar 

  15. 15.

    A. Van De Walle and G. Ceder, Rev. Mod. Phys. 74, 11 (2002).

    Article  Google Scholar 

  16. 16.

    Q. Xu and A. Van der Ven, Intermetallics 17, 319 (2009).

    Article  Google Scholar 

  17. 17.

    A. Van der Ven, J.C. Thomas, Q. Xu, B. Swoboda, and D. Morgan, Phys. Rev. B 78, 104306 (2008).

    Article  Google Scholar 

  18. 18.

    J.M. Sanchez, F. Ducastelle, and D. Gratias, Phys. A 128, 334 (1984).

    MathSciNet  Article  Google Scholar 

  19. 19.

    D. De Fontaine, Solid State Phys. 47, 33 (1994).

    Google Scholar 

  20. 20.

    W. Zhong, D. Vanderbilt, and K. Rabe, Phys. Rev. Lett. 73, 1861 (1994).

    Article  Google Scholar 

  21. 21.

    W. Zhong, D. Vanderbilt, and K. Rabe, Phys. Rev. B 52, 6301 (1995).

    Article  Google Scholar 

  22. 22.

    J.C. Thomas and A. Van der Ven, Phys. Rev. B 88, 214111 (2013).

    Article  Google Scholar 

  23. 23.

    N. Ni, S. Lozano-Perez, J. Sykes, and C. Grovenor, Ultramicroscopy 111, 123 (2011).

    Article  Google Scholar 

  24. 24.

    Y. Dong, A.T. Motta, and E.A. Marquis, J. Nucl. Mater. 442, 270 (2013).

    Article  Google Scholar 

  25. 25.

    B. Puchala and A. Van der Ven, Phys. Rev. B 88, 094108 (2013).

    Article  Google Scholar 

  26. 26.

    M.-H. Chen, B. Puchala, and A. Van der Ven, Calphad 51, 292 (2015).

    Article  Google Scholar 

  27. 27.

    J.C. Thomas and A. Van der Ven, Phys. Rev. B 90, 224105 (2014).

    Article  Google Scholar 

  28. 28.

    J. Abriata, J. Garces, and R. Versaci, Bull. Alloy Ph. Diagr. 7, 116 (1986).

    Article  Google Scholar 

  29. 29.

    M. Youssef and B. Yildiz, Phys. Rev. B 86, 144109 (2012).

    Article  Google Scholar 

  30. 30.

    M. Youssef, M. Yang, and B. Yildiz, Phys. Rev. Appl. 5, 014008 (2016).

    Article  Google Scholar 

  31. 31.

    M. Youssef and B. Yildiz, Phys. Rev. B 89, 024105 (2014).

    Article  Google Scholar 

  32. 32.

    G. Henkelman, B.P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).

    Article  Google Scholar 

  33. 33.

    K. Park and D. Olander, J. Electrochem. Soc. 138, 1154 (1991).

    Article  Google Scholar 

  34. 34.

    U. Otgonbaatar, W. Ma, M. Youssef, and B. Yildiz, J. Phys. Chem. C 118, 20122 (2014).

    Article  Google Scholar 

  35. 35.

    M. Youssef and B. Yildiz, Phys. Chem. Chem. Phys. 16, 1354 (2014).

    Article  Google Scholar 

  36. 36.

    J. Belle and M. Mallett, J. Electrochem. Soc. 101, 339 (1954).

    Article  Google Scholar 

  37. 37.

    M. Holz, S.R. Heil, and A. Sacco, Phys. Chem. Chem. Phys. 2, 4740 (2000).

    Article  Google Scholar 

  38. 38.

    J.P. Pemsler, J. Electrochem. Soc. 105, 315 (1958).

    Article  Google Scholar 

  39. 39.

    K. Schlichting, N. Padture, and P. Klemens, J. Mater. Sci. 36, 3003 (2001).

    Article  Google Scholar 

  40. 40.

    J. Fink and L. Leibowitz, J. Nucl. Mater. 226, 44 (1995).

    Article  Google Scholar 

  41. 41.

    O. Courty, A.T. Motta, and J.D. Hales, J. Nucl. Mater. 452, 311 (2014).

    Article  Google Scholar 

  42. 42.

    D. Xu, X. Hu, and B.D. Wirth, App. Phys. Lett 102, 011904 (2013).

    Article  Google Scholar 

  43. 43.

    D. Xu, B.D. Wirth, M. Li, and M.A. Kirk, Acta Mater. 60, 4286 (2012).

    Article  Google Scholar 

  44. 44.

    Y. Shinohara, H. Abe, T. Iwai, N. Sekimura, T. Kido, H. Yamamoto, and T. Taguchi, J. Nucl. Sci. Technol. 46, 564 (2009).

    Article  Google Scholar 

  45. 45.

    D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements: Solutions to Problems, TID-26711-P2 (Springfield, Virginia: National Technical Information Service, Office of Public Affairs, Energy Research and Development Administration, U.S. Department of Commerce, 1976). http://www.osti.gov/scitech/servlets/purl/7290222.

Download references

Acknowledgements

This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (CASL), an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under US Department of Energy Contract No. DE-AC05-00OR22725.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaime Marian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aryanfar, A., Thomas, J., Van der Ven, A. et al. Integrated Computational Modeling of Water Side Corrosion in Zirconium Metal Clad Under Nominal LWR Operating Conditions. JOM 68, 2900–2911 (2016). https://doi.org/10.1007/s11837-016-2129-1

Download citation

Keywords

  • Hydride
  • Oxide Scale
  • Vibrational Excitation
  • Zirconium Alloy
  • Oxide Layer Thickness