Advertisement

JOM

, Volume 68, Issue 11, pp 2900–2911 | Cite as

Integrated Computational Modeling of Water Side Corrosion in Zirconium Metal Clad Under Nominal LWR Operating Conditions

  • Asghar Aryanfar
  • John Thomas
  • Anton Van der Ven
  • Donghua Xu
  • Mostafa Youssef
  • Jing Yang
  • Bilge Yildiz
  • Jaime MarianEmail author
Article

Abstract

A mesoscopic chemical reaction kinetics model to predict the formation of zirconium oxide and hydride accumulation light-water reactor (LWR) fuel clad is presented. The model is designed to include thermodynamic information from ab initio electronic structure methods as well as parametric information in terms of diffusion coefficients, thermal conductivities and reaction constants. In contrast to approaches where the experimentally observed time exponents are captured by the models by design, our approach is designed to be predictive and to provide an improved understanding of the corrosion process. We calculate the time evolution of the oxide/metal interface and evaluate the order of the chemical reactions that are conducive to a t 1/3 dependence. We also show calculations of hydrogen cluster accumulation as a function of temperature and depth using spatially dependent cluster dynamics. Strategies to further cohesively integrate the different elements of the model are provided.

Keywords

Hydride Oxide Scale Vibrational Excitation Zirconium Alloy Oxide Layer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (CASL), an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under US Department of Energy Contract No. DE-AC05-00OR22725.

References

  1. 1.
    B. Cox, Advances in Corrosion Science and Technology (Berlin: Springer, 1976), p. 173.CrossRefGoogle Scholar
  2. 2.
    K. Forsberg, M. Limbäck, and A.R. Massih, Nucl. Eng. Des. 154, 157 (1995).CrossRefGoogle Scholar
  3. 3.
    S. Kass, J. Nucl. Mater. 29, 315 (1969).CrossRefGoogle Scholar
  4. 4.
    A.J.G. Maroto, R. Bordoni, M. Villegas, M.A. Blesa, A.M. Olmedo, A. Iglesias, and G. Rigotti, J. Nucl. Mater. 229, 79 (1996).CrossRefGoogle Scholar
  5. 5.
    G.P. Sabol and S.B. Dalgaard, J. Electrochem. Soc. 122, 316 (1975).CrossRefGoogle Scholar
  6. 6.
    T.R. Allen, R.J.M. Konings, and A.T. Motta, in Comprehensive Nuclear Materials, ed. J.M.K. Rudy (Oxford: Elsevier, 2012), pp. 49–68.Google Scholar
  7. 7.
    B.N.L. Srinivas, (Master of Science thesis, Department of Physics, Royal Institute of Technology, Stockholm, Sweden, 2012).Google Scholar
  8. 8.
    M. Kuroda, K. Yoshioka, S. Yamanaka, H. Anada, F. Nagase, and H. Uetsuka, J. Nucl. Sci. Technol. 37, 670 (2000).CrossRefGoogle Scholar
  9. 9.
    K.E. Sickafus, H. Matzke, T. Hartmann, K. Yasuda, J.A. Valdez, P. Chodak III, M. Nastasi, and R.A. Verrall, J. Nucl. Mater. 274, 66 (1999).CrossRefGoogle Scholar
  10. 10.
    R. Adamson, F. Garzarolli, B. Cox, A. Strasser, and P. Rudling, ZIRAT12 Special Topic Report (ANT International, Molnlycke, Sweden, 2007).Google Scholar
  11. 11.
    B. Cox, J. Nucl. Mater. 336, 331 (2005).CrossRefGoogle Scholar
  12. 12.
    A. Varias and A. Massih, J. Nucl. Mater. 279, 273 (2000).CrossRefGoogle Scholar
  13. 13.
    S.M. Allen and J.W. Cahn, Acta Metall. 27, 1085 (1979).CrossRefGoogle Scholar
  14. 14.
    A. Van der Ven, J.C. Thomas, Q. Xu, and J. Bhattacharya, Math. Comput. Simul. 80, 1393 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Van De Walle and G. Ceder, Rev. Mod. Phys. 74, 11 (2002).CrossRefGoogle Scholar
  16. 16.
    Q. Xu and A. Van der Ven, Intermetallics 17, 319 (2009).CrossRefGoogle Scholar
  17. 17.
    A. Van der Ven, J.C. Thomas, Q. Xu, B. Swoboda, and D. Morgan, Phys. Rev. B 78, 104306 (2008).CrossRefGoogle Scholar
  18. 18.
    J.M. Sanchez, F. Ducastelle, and D. Gratias, Phys. A 128, 334 (1984).MathSciNetCrossRefGoogle Scholar
  19. 19.
    D. De Fontaine, Solid State Phys. 47, 33 (1994).Google Scholar
  20. 20.
    W. Zhong, D. Vanderbilt, and K. Rabe, Phys. Rev. Lett. 73, 1861 (1994).CrossRefGoogle Scholar
  21. 21.
    W. Zhong, D. Vanderbilt, and K. Rabe, Phys. Rev. B 52, 6301 (1995).CrossRefGoogle Scholar
  22. 22.
    J.C. Thomas and A. Van der Ven, Phys. Rev. B 88, 214111 (2013).CrossRefGoogle Scholar
  23. 23.
    N. Ni, S. Lozano-Perez, J. Sykes, and C. Grovenor, Ultramicroscopy 111, 123 (2011).CrossRefGoogle Scholar
  24. 24.
    Y. Dong, A.T. Motta, and E.A. Marquis, J. Nucl. Mater. 442, 270 (2013).CrossRefGoogle Scholar
  25. 25.
    B. Puchala and A. Van der Ven, Phys. Rev. B 88, 094108 (2013).CrossRefGoogle Scholar
  26. 26.
    M.-H. Chen, B. Puchala, and A. Van der Ven, Calphad 51, 292 (2015).CrossRefGoogle Scholar
  27. 27.
    J.C. Thomas and A. Van der Ven, Phys. Rev. B 90, 224105 (2014).CrossRefGoogle Scholar
  28. 28.
    J. Abriata, J. Garces, and R. Versaci, Bull. Alloy Ph. Diagr. 7, 116 (1986).CrossRefGoogle Scholar
  29. 29.
    M. Youssef and B. Yildiz, Phys. Rev. B 86, 144109 (2012).CrossRefGoogle Scholar
  30. 30.
    M. Youssef, M. Yang, and B. Yildiz, Phys. Rev. Appl. 5, 014008 (2016).CrossRefGoogle Scholar
  31. 31.
    M. Youssef and B. Yildiz, Phys. Rev. B 89, 024105 (2014).CrossRefGoogle Scholar
  32. 32.
    G. Henkelman, B.P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).CrossRefGoogle Scholar
  33. 33.
    K. Park and D. Olander, J. Electrochem. Soc. 138, 1154 (1991).CrossRefGoogle Scholar
  34. 34.
    U. Otgonbaatar, W. Ma, M. Youssef, and B. Yildiz, J. Phys. Chem. C 118, 20122 (2014).CrossRefGoogle Scholar
  35. 35.
    M. Youssef and B. Yildiz, Phys. Chem. Chem. Phys. 16, 1354 (2014).CrossRefGoogle Scholar
  36. 36.
    J. Belle and M. Mallett, J. Electrochem. Soc. 101, 339 (1954).CrossRefGoogle Scholar
  37. 37.
    M. Holz, S.R. Heil, and A. Sacco, Phys. Chem. Chem. Phys. 2, 4740 (2000).CrossRefGoogle Scholar
  38. 38.
    J.P. Pemsler, J. Electrochem. Soc. 105, 315 (1958).CrossRefGoogle Scholar
  39. 39.
    K. Schlichting, N. Padture, and P. Klemens, J. Mater. Sci. 36, 3003 (2001).CrossRefGoogle Scholar
  40. 40.
    J. Fink and L. Leibowitz, J. Nucl. Mater. 226, 44 (1995).CrossRefGoogle Scholar
  41. 41.
    O. Courty, A.T. Motta, and J.D. Hales, J. Nucl. Mater. 452, 311 (2014).CrossRefGoogle Scholar
  42. 42.
    D. Xu, X. Hu, and B.D. Wirth, App. Phys. Lett 102, 011904 (2013).CrossRefGoogle Scholar
  43. 43.
    D. Xu, B.D. Wirth, M. Li, and M.A. Kirk, Acta Mater. 60, 4286 (2012).CrossRefGoogle Scholar
  44. 44.
    Y. Shinohara, H. Abe, T. Iwai, N. Sekimura, T. Kido, H. Yamamoto, and T. Taguchi, J. Nucl. Sci. Technol. 46, 564 (2009).CrossRefGoogle Scholar
  45. 45.
    D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements: Solutions to Problems, TID-26711-P2 (Springfield, Virginia: National Technical Information Service, Office of Public Affairs, Energy Research and Development Administration, U.S. Department of Commerce, 1976). http://www.osti.gov/scitech/servlets/purl/7290222.

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Asghar Aryanfar
    • 1
  • John Thomas
    • 2
  • Anton Van der Ven
    • 2
  • Donghua Xu
    • 3
  • Mostafa Youssef
    • 4
  • Jing Yang
    • 4
  • Bilge Yildiz
    • 4
  • Jaime Marian
    • 1
    Email author
  1. 1.University of California, Los AngelesLos AngelesUSA
  2. 2.University of California, Santa BarbaraSanta BarbaraUSA
  3. 3.University of Tennessee-KnoxvilleKnoxvilleUSA
  4. 4.Massachussetts Institute of TechnologyCambridgeUSA

Personalised recommendations