Skip to main content

Advertisement

Log in

Dielectric and Energy Storage Properties of the Heterogeneous P(VDF-HFP)/PC Composite Films

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Polymer-based materials with a high discharge energy and low energy loss have attracted considerable attention for energy storage applications. A new class of polymer-based composite films composed of amorphous polycarbonate (PC) and poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)] has been fabricated by simply solution blending followed by thermal treatment under vacuum. The results show that the diameter of the spherical phase for PC and the melting temperature of P(VDF-HFP) increase, and the crystallinity and crystallization temperature of P(VDF-HFP) decrease with increasing PC content. The phase transition from the polar β phase to weak polarity γ phase is induced by PC addition. Moreover, the Curie temperature of the P(VDF-HFP)/PC composite films shifts to a lower temperature. With the addition of PC, the permittivity, polarization and discharge energy of the P(VDF-HFP)/PC composite films slightly decrease. However, the energy loss is significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).

    Article  Google Scholar 

  2. X.Y. Huang and P.K. Jiang, Adv. Mater. 27, 546 (2015).

    Article  Google Scholar 

  3. Z.M. Dang, J.K. Yuan, S.H. Yao, and R.J. Liao, Adv. Mater. 25, 6334 (2013).

    Article  Google Scholar 

  4. P. Kim, J. Li, N.M. Doss, J.P. Calame, J.P. Tillotson, P.J. Hotchkiss, and J.W. Perry, ACS Nano 3, 2581 (2009).

    Article  Google Scholar 

  5. R. Li, Z.X. Chen, and J.Z. Pei, Polymers 8, 1 (2016).

    Google Scholar 

  6. Q. Meng, W. Li, Y. Zheng, and Z. Zhang, J. Appl. Polym. Sci. 116, 2674 (2010).

    Google Scholar 

  7. X.P. Yuan and T.C. Chung, Appl. Phys. Lett. 98, 062901 (2011).

    Article  Google Scholar 

  8. J.Y. Song, C.L. Cheng, Y.Y. Wang, and C.C. Wan, J. Electrochem. Soc. 149, A1230 (2002).

    Article  Google Scholar 

  9. P.S. Xiao, N.B. Yi, T.F. Zhang, Y. Huang, H.C. Chang, Y. Yang, Y. Zhou, and Y.S. Chen, Adv. Sci. 1, 1500438 (2016).

    Article  Google Scholar 

  10. A. Lovinger, Science 220, 1115 (1983).

    Article  Google Scholar 

  11. Q.M. Zhang, V. Bharti, and X. Zhao, Science 280, 2101 (1998).

    Article  Google Scholar 

  12. Z.C. Zhang and T.C. Chung, Macromolecules 40, 9391 (2007).

    Article  Google Scholar 

  13. Z.C. Zhang, Q.J. Meng, and T.C. Chung, Polymer 50, 707 (2009).

    Article  Google Scholar 

  14. J.J. Li, S.B. Tan, S.J. Ding, H.Y. Li, L.J. Yang, and Z.C. Zhang, J. Mater. Chem. 22, 23468 (2012).

    Article  Google Scholar 

  15. M. Mackey, A. Hiltner, E. Baer, L. Flandin, M.A. Wolak, and J.S. Shirk, J. Phys. D Appl. Phys. 42, 175304 (2009).

    Article  Google Scholar 

  16. X. Lu, A. Schirokauer, J. Scheinbeim, and I.E.E.E. Trans, Ultrason. Ferroelectr. Freq. Control 47, 1291 (2000).

    Article  Google Scholar 

  17. H.N. Na, X.W. Liu, H. Sun, Y.H. Zhao, C. Zhao, and X.Y. Yuan, J. Polym. Sci. Part B Polym. Phys. 48, 372 (2010).

    Article  Google Scholar 

  18. R.J. Gregorio, J. Appl. Polym. Sci. 100, 3272 (2006).

    Article  Google Scholar 

  19. W.Z. Ma, J. Zhang, X.L. Wang, and S.M. Wang, Appl. Surf. Sci. 253, 8377 (2007).

    Article  Google Scholar 

  20. M.A. Bachmann, W.L. Gordon, J.L. Koenig, and J.B. Lando, J. Appl. Phys. 50, 6106 (1979).

    Article  Google Scholar 

  21. K. Matsushige and T. Takemura, J. Polym. Sci. Part B Polym. Phys. 16, 921 (1978).

    Article  Google Scholar 

  22. G.R. Peng, X.J. Zhao, Z.J. Zhan, S.Z. Ci, Q. Wang, Y.J. Liang, and M.L. Zhao, RSC Adv. 4, 16849 (2014).

    Article  Google Scholar 

  23. S. Tan, X. Hu, S. Ding, Z. Zhang, H. Li, and L. Yang, J. Mater. Chem. A 1, 10353 (2013).

    Article  Google Scholar 

  24. X.J. Zhao, W.P. Liu, X.B. Jiang, G.R. Peng, and J. Li, ECS J. Solid State Sci. 5, N10 (2016).

    Article  Google Scholar 

  25. L. Yang, J.H. Qiu, H.L. Ji, K.J. Zhu, and J. Wang, J. Mater. Sci. Mater. Electron. 25, 2126 (2014).

    Article  Google Scholar 

  26. M. Poulsen, A.V. Sorokin, S. Adenwalla, S. Ducharme, and V.M. Fridkin, J. Appl. Phys. 103, 0341161 (2008).

    Article  Google Scholar 

  27. T. Furukawa and Y. Takahashi, Ferroelectrics 264, 81 (2001).

    Google Scholar 

  28. K. Yu, H. Wang, Y.C. Zhou, Y.Y. Bai, and Y.J. Niu, J. Appl. Phys. 113, 034105 (2013).

    Article  Google Scholar 

  29. X.J. Zhao, G.R. Peng, Z.J. Zhan, and W.N. Meng, Polym. Sci. Ser. A 57, 452 (2015).

    Article  Google Scholar 

  30. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q.M. Zhang, Science 313, 313 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Natural Science Foundations of Hebei province of China (E2012203153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojia Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Peng, G. & Zhan, Z. Dielectric and Energy Storage Properties of the Heterogeneous P(VDF-HFP)/PC Composite Films. JOM 69, 2453–2459 (2017). https://doi.org/10.1007/s11837-016-2116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2116-6

Navigation