Advertisement

JOM

, Volume 68, Issue 11, pp 2803–2810 | Cite as

Development of Cast Alumina-Forming Austenitic Stainless Steels

  • G. Muralidharan
  • Y. Yamamoto
  • M. P. Brady
  • L. R. Walker
  • H. M. Meyer III
  • D. N. Leonard
Article

Abstract

Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800–850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

Keywords

Austenitic Stainless Steel Base Alloy Creep Strength Creep Property Alumina Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Research sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, the Technology Innovation Program at Oak Ridge National Laboratory, and ARPA-E under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

References

  1. 1.
    Steel Castings Handbook, Supplement 9, High Alloy Data Sheets: Heat Series (Crystal Lake, IL: Steel Founders’ Society of America, 2004), pp. 2–60.Google Scholar
  2. 2.
    H. Wen-Tai and R.W.K. Honeycombe, Mater. Sci. Technol. Ser. 1, 385 (1985).CrossRefGoogle Scholar
  3. 3.
    H. Wen-Tai and R.W.K. Honeycombe, Mater. Sci. Technol. Ser. 1, 390 (1985).CrossRefGoogle Scholar
  4. 4.
    G.D. Barbabela, L.H. de Almeida, T.L. da Silveira, and I. Le May, Mater. Charact. 26, 1 (1991).CrossRefGoogle Scholar
  5. 5.
    G.D. Barbabela, L.H. de Almeida, T.L. da Silveira, and I. Le May, Mater. Charact. 26, 193 (1991).CrossRefGoogle Scholar
  6. 6.
    G.D. Barbabela, L.H. de Almeida, T.L. da Silveira, and I. Le May, Mater. Charact. 29, 387 (1992).CrossRefGoogle Scholar
  7. 7.
    C.W. Thomas, M. Borshevsky, and A.N. Marshall, Mater. Sci. Technol. Ser. 8, 390 (1992).CrossRefGoogle Scholar
  8. 8.
    R.A.P. Ibanez, G.D. de Almeida Soares, L.H. de Almeida, and I. Le May, Mater. Charact. 30, 243 (1993).CrossRefGoogle Scholar
  9. 9.
    I.A. Sustaita-Torres, S. Haro-Rodriguez, M.P. Guerrero-Mata, M. de La Garza, E. Valdes, F. Deshcaux-Beaume, and R. Colas, Mater. Chem. Phys. 133, 1018 (2012).CrossRefGoogle Scholar
  10. 10.
    E.J. Opila, Mater. Sci. Forum 461–464, 765 (2004).CrossRefGoogle Scholar
  11. 11.
    E.J. Opila, N.S. Jacobson, D.L. Myers, and E.H. Copland, JOM 58, 22 (2006).CrossRefGoogle Scholar
  12. 12.
    W.J. Quadakkers, J. Zurek, and M. Hansel, JOM 61, 44 (2009).CrossRefGoogle Scholar
  13. 13.
    S.R.J. Saunders, M. Monteiro, and F. Rizzo, Prog. Mater. Sci. 53, 775 (2008).CrossRefGoogle Scholar
  14. 14.
    F.H. Stott, G.C. Wood, and J. Stringer, Oxid. Met. 44, 113 (1995).CrossRefGoogle Scholar
  15. 15.
    T. Fujioka, M. Kinugasa, S. Iizumi, S. Teshima, I. Shimizu, US Pat. # 3,989,514, (1976).Google Scholar
  16. 16.
    J.A. McGurty, US Pat. # 4,086,085, (1978).Google Scholar
  17. 17.
    D. Satyanarayana, G. Malakondaiah, and D. Sarma, Mater. Sci. Eng., A 323, 119 (2002).CrossRefGoogle Scholar
  18. 18.
    V. Ramakrishnan, J.A. McGurty, and N. Jayaraman, Oxid. Met. 60, 185 (1988).CrossRefGoogle Scholar
  19. 19.
    B.A. Pint, R. Peraldi, and P.J. Maziasz, Mater. Sci. Forum 461–464, 815 (2004).CrossRefGoogle Scholar
  20. 20.
    Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, and E.A. Payzant, Science 316, 433 (2007).CrossRefGoogle Scholar
  21. 21.
    Y. Yamamoto, M.P. Brady, Z.P. Lu, C.T. Liu, M. Takeyama, P.J. Maziasz, and B.A. Pint, Metall. Mater. Trans. A 38A, 2737 (2007).CrossRefGoogle Scholar
  22. 22.
    Y. Yamamoto, M.P. Brady, M.L. Santella, H. Bei, P.J. Maziasz, and B.A. Pint, Metall. Mater. Trans. A 42A, 922 (2011).CrossRefGoogle Scholar
  23. 23.
    J.C. Pivin, D. Delaunay, S. Roquescarmes, A.M. Huntz, and P. Lacombe, Corros. Sci. 20, 351 (1980).CrossRefGoogle Scholar
  24. 24.
    N. Belen, P. Tomaszewicz, and D.J. Young, Oxid. Met. 22, 227 (1984).CrossRefGoogle Scholar
  25. 25.
    H. Asteman, W. Hartnagel, and D. Jakobi, Oxid. Met. 80, 3 (2013).CrossRefGoogle Scholar
  26. 26.
    D.Q. Zhou, W.X. Zhao, H.H. Mao, Y.X. Hu, X.Q. Xu, X.Y. Sun, and Z.P. Lu, Mater. Sci. Eng., A 622, 91 (2015).CrossRefGoogle Scholar
  27. 27.
    G. Muralidharan, Y. Yamamoto, and M.P. Brady, US Patent # 8,431,072, (2013).Google Scholar
  28. 28.
    B.A. Pint, J.P. Shingledecker, M.P. Brady, and P.J. Maziasz, in Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea, and Air. May 14–17 (Montreal, Canada, 2007), 3, 995 (2007).Google Scholar
  29. 29.
    M.P. Brady, G. Muralidharan, D.N. Leonard, J.A. Haynes, R.G. Weldon, and R.D. England, Oxid. Met. 82, 359 (2014).CrossRefGoogle Scholar
  30. 30.
    N. Saunders, X. Li, A.P. Miodownik, and J.-Ph. Schillé, Materials Design Approaches and Experiences, ed. J.-C. Zhao, M. Fahrmann, and T.M. Pollock (Warrendale, PA: TMS, 2001), pp.185–197.Google Scholar
  31. 31.
    N. Saunders, Fe-DATA, a database for thermodynamic calculations for Fe-Alloys. Thermotech Ltd., Surrey Technology Centre, The Surrey Research Park, Guilford, Surrey, GU2 7YG, UK.Google Scholar
  32. 32.
    G. Muralidharan, Y. Yamamoto, M.P. Brady, B.A. Pint, D. Voke, and R.I. Pankiw, Corrosion 2015, Paper 6114 (Houston: NACE International, 2015).Google Scholar
  33. 33.
    S. Shi and J.C. Lippold, Mater. Charact. 59, 1029 (2008).CrossRefGoogle Scholar
  34. 34.
    R. Peraldi and B.A. Pint, Oxid. Met. 61, 463 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations