Abstract
Chromium-based alloys are potential candidates for high-temperature structural applications. This article reviews the challenges of chromium and Cr-alloys used at temperatures higher than 900°C with the focus on their oxidation behavior. First, latest findings on the key environmental factors affecting the oxidation resistance such as volatilization and the impact of nitrogen in air are summarized. Oxidation resistance is addressed with regards to the effects of major alloying elements and reactive elements as well as its correlation with microstructure in multi-phase alloys. Secondly, the existing challenges to develop chromium alloys with enhanced high-temperature oxidation resistance are discussed. It is shown that volatilization and nitridation, the two major obstacles for the use of chromium alloys in air, can be significantly improved by alloy design.
This is a preview of subscription content, access via your institution.








References
Y. Gu, H. Harada, and Y. Ro, JOM J. Miner. Met. Mater. Soc. 56, 28 (2004).
A.H. Sully, E.A. Brandes, and A.G. Provan, J. Inst. Met. 81, 569 (1953).
R.M. Parke, F.P. Bens, Symposium on Materials for Gas Turbines (American society of testing materials, 1946), p. 80.
W. Kroll, Zeitschrift für anorganische und allgemeine Chemie 226, 23 (1935).
American Society for Metals, Ductile Chromium and its Alloys ( American Society for Metals, United States Office of Ordnance Research, 1955).
H.B. Goodwin, E.A. Gilbert, C.M. Schwartz, and C.T. Greenidge, J. Electrochem. Soc. 100, 152 (1953).
E.A. Brandes, H.T. Greenaway, and H.E.N. Stone, Nature 178, 587 (1956).
K. Taneichi, T. Narushima, Y. Iguchi, and C. Ouchi, Mater. Trans. 47, 2540 (2006).
A.U. Seybolt and D.H. Haman, Trans. Metall. Soc. AIME 230, 1294 (1964).
H. Johansen and G. Asai, J. Electrochem. Soc. 101, 604 (1954).
W.H. Smith and A.U. Seybolt, J. Electrochem. Soc. 103, 347 (1956).
D.M. Scruggs, US patents, No. 3175279 (1965).
D.J. Young and M. Cohen, J. Electrochem. Soc. 124, 775 (1977).
D. Caplan and M. Cohen, J. Electrochem. Soc. 108, 438 (1961).
W.C. Hagel, Trans. ASM 56, 583 (1963).
E.A. Gulbransen and K.F. Andrew, J. Electrochem. Soc. 104, 334 (1957).
P. Kofstad, High Temperature Corrosion (Amsterdam: Elsevier, 1988).
E.A. Gulbransen and K.F. Andrew, J. Electrochem. Soc. 99, 402 (1952).
H. Taimatsu, J. Electrochem. Soc. 146, 3686 (1999).
K.P. Lillerud and P. Kofstad, J. Electrochem. Soc. 127, 2397 (1980).
C. Wagner, J. Electrochem. Soc. 103, 627 (1956).
A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion (Delhi: ASM International, 2002).
K.P. Lillerud and P. Kofstad, Oxid. Met. 17, 195 (1982).
H. Hindam and D.P. Whittle, Oxid. Met. 18, 245 (1982).
D. Caplan and G.I. Sproule, Oxid. Met. 9, 459 (1975).
P. Kofstad and K.P. Lillerud, Oxid. Met. 17, 177 (1982).
L. Cadiou and J. Paidassi, Mem. Sci. Rev. Met. 66, 217 (1969).
M. Michalik (Ph.D. Thesis, RWTH Aachen, Aachen, 2007).
G. Hultquist, B. Tveten, and E. Hörnlund, Oxid. Met. 54, 1 (2000).
S.R.J. Saunders, M. Monteiro, and F. Rizzo, Prog. Mater Sci. 53, 775 (2008).
P. Fox, D.G. Lees, and G.W. Lorimer, Oxid. Met. 36, 491 (1991).
D.J. Young, High Temperature Oxidation and Corrosion of Metals, 1st ed. (Netherland: Elsevier, 2008).
Y.W. Kim and G.R. Belton, Metall. Trans. 5, 1811 (1974).
H. Graham and H. Davis, J. Am. Ceram. Soc. 54, 89 (1971).
N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals (Cambridge: Cambridge University Press, 2006).
R.T. Grimley, R.P. Burns, and M.G. Inghram, J. Chem. Phys. 34, 664 (1961).
C.S. Tedmon, J. Electrochem. Soc. 113, 766 (1966).
B. Pujilaksono, T. Jonsson, M. Halvarsson, I. Panas, J.-E. Svensson, and L.-G. Johansson, Oxid. Met. 70, 163 (2008).
M. Hänsel, W.J. Quadakkers, L. Singheiser, and H. Nickel (Ph.D. Thesis, Forschungszentrum Jülich GmbH, 1998).
A. Soleimani-Dorcheh, W. Donner, and M.C. Galetz, Mater. Corros. 65, 1143 (2014).
A. Soleimani-Dorcheh and M.C. Galetz, Oxid. Met. 84, 73 (2015).
P.J. Meschter, E.J. Opila, and N.S. Jacobson, Annu. Rev. Mater. Res. 43, 559 (2013).
E.J. Opila, N.S. Jacobson, and Q.N. Nguyen, Gaseous Hydroxides of High Temperature Materials (New London, NH: Gordon Conference, 2009).
E.J. Opila, D.L. Myers, N.S. Jacobson, I.M.B. Nielsen, D.F. Johnson, J.K. Olminsky, and M.D. Allendorf, J. Phys. Chem. A 111, 1971 (2007).
N. Jacobson, D. Myers, E. Opila, and E. Copland, J. Phys. Chem. Solids 66, 471 (2005).
O. Glemser and A. Müller, Zeitschrift für anorganische und allgemeine Chemie 334, 150 (1964).
A. Yamauchi, K. Kurokawa, and H. Takahashi, Oxid. Met. 59, 517 (2003).
E.J. Opila, Mater. Sci. Forum 461–464, 765 (2004).
E.J. Opila, J. Am. Ceram. Soc. 86, 1237 (2003).
X.G. Zheng and D.J. Young, Oxid. Met. 42, 163 (1994).
X.G. Zheng and D.J. Young, Mater. Sci. Forum 251–254, 567 (1997).
M. Hänsel, E. Turan, V. Shemet, D. Grüner, U. Breuer, D. Simon, B. Gorr, H.J. Christ, and W.J. Quadakkers, Mater. High Temp. 32, 160 (2015).
M. Michalik, S.L. Tobing, M. Hänsel, V. Shemet, W.J. Quadakkers, and D.J. Young, Mater. Corros. 65, 260 (2014).
D.J. Young, T.D. Nguyen, P. Felfer, J. Zhang, and J.M. Cairney, Scr. Mater. 77, 29 (2014).
T. Nguyen, J. Zhang, and D. Young, Oxid. Met., 1 (2015).
T. Mills, J. Less Common Met. 23, 317 (1971).
T. Mills, J. Less Common Met. 26, 223 (1972).
H. Ono-Nakazato, K. Taguchi, T. Usui, K. Tamura, and Y. Tomatsu, Metall. Mater. Trans. B 32, 1113 (2001).
K. Schwerdtfeger, Trans. Metall. Soc. AIME 239, 1432 (1968).
K.N. Strafford, Corros. Sci. 19, 49 (1979).
T. Mills, Oxid. Met. 15, 437 (1981).
T. Mills, Oxid. Met. 15, 447 (1981).
L. Royer, X. Ledoux, S. Mathieu, and P. Steinmetz, Oxid. Met. 74, 79 (2010).
P. Kofstad, Oxid. Met. 24, 265 (1985).
Z.B. Qi, B. Liu, Z.T. Wu, F.P. Zhu, Z.C. Wang, and C.H. Wu, Thin Solid Films 544, 515 (2013).
L. Royer, S. Mathieu, C. Liebaut, and P. Steinmetz, Adv. Sci. Technol. 72, 46 (2011).
C.T. Liu, P.F. Tortorelli, J.A. Horton, and C.A. Carmichael, Mater. Sci. Eng., A 214, 23 (1996).
M.P. Brady, J.H. Zhu, C.T. Liu, P.F. Tortorelli, and L.R. Walker, Intermetallics 8, 1111 (2000).
M.P. Brady, P.F. Tortorelli, and L.R. Walker, Mater. High Temp. 17, 235 (2000).
M. Schütze, Corrosion and Environmental Degradation (New York: Wiley-VCH, 2000).
A. Bhowmik, H.T. Pang, I.M. Edmonds, C.M.F. Rae, and H.J. Stone, Intermetallics 32, 373 (2013).
L. Royer, S. Mathieu, C. Liebaut, and P. Steinmetz, Mater. Sci. Forum 595, 1047 (2008).
A. Bhowmik, R.J. Bennett, B. Monserrat, G.J. Conduit, L.D. Connor, J.E. Parker, R.P. Thompson, C.N. Jones, and H.J. Stone, Intermetallics 48, 62 (2013).
V.M. Chad, M.I.S.T. Faria, G.C. Coelho, C.A. Nunes, and P.A. Suzuki, Mater. Charact. 59, 74 (2008).
J. Ma, Y. Gu, L. Shi, L. Chen, Z. Yang, and Y. Qian, J. Alloys Comput. 375, 249 (2004).
S.V. Raj, Mater. Sci. Eng. A 192–193, 583, (1995).
D.M. Shah and D.L. Anton, Mater. Sci. Eng. A 153, 402 (1992).
H. Bei, E.P. George, E.A. Kenik, and G.M. Pharr, Acta Mater. 51, 6241 (2003).
A. Gali, H. Bei, and E.P. George, MRS Proceedings, 980, 0980-II05-36 (2007).
T.A. Cruse and J.W. Newkirk, Mater. Sci. Eng. A 239–240, 410 (1997).
A. Gali, H. Bei, and E.P. George, Acta Mater. 57, 3823 (2009).
H. Bei, E.P. George, and G.M. Pharr, MRS Proc. 753, BB2.5 (2003).
J.W. Newkirk and J.A. Hawk, Wear 251, 1361 (2001).
H. Bei (Ph.D. Thesis, University of Tennessee, 2003).
H. Bei, E.P. George, and G.M. Pharr, Scr. Mater. 51, 875 (2004).
H. Bei, G.M. Pharr, and E.P. George, J. Mater. Sci. 39, 3975 (2004).
A. Soleimani-Dorcheh and M. Galetz, Metall. Mater. Trans. A 45, 1639 (2014).
Y.R. He, R.A. Rapp, and P.P. Tortorelli, Mater. Sci. Eng., A 222, 109 (1997).
B.V. Cockeram, R.A. Rapp, Mater. Sci. Eng. A 192–193, 980, (1995).
Ö.N. Dogan, Oxid. Met. 69, 233 (2008).
S. Knittel, S. Mathieu, L. Portebois, and M. Vilasi, Intermetallics 47, 43 (2014).
H. Okamoto, J. Phys. Equilib. Diff. 29, 112 (2008).
R.H. Buck and R.B. Waterhouse, J. Less Common Met. 6, 36 (1964).
M.H. Sluiter, Phys. Rev. B 80, 220102 (2009).
M.P. Brady, I.G. Wright, and B. Gleeson, JOM 52, 16 (2000).
B.A. Pint, Proceedings of the John Stringer Symposium on High Temperature Corrosion (2003).
D. Naumenko, B.A. Pint, and W.J. Quadakkers, Oxid. Met. 86, 1 (2016).
P.Y. Hou, Current Topics on High Temperature Materials: JSPS report of the 123rd Committee on Heat Resisting Materials and Alloys (2007).
S. Chevalier, Mater. Corros. 65, 109 (2014).
D.P. Whittle and J. Stringer, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 295, 309 (1980).
B.A. Pint, J. Am. Ceram. Soc. 86, 686 (2003).
S. Chevalier, G. Bonnet, J.P. Larpin, and J.C. Colson, Corros. Sci. 45, 1661 (2003).
P.Y. Hou and J. Stringer, Oxid. Met. 38, 323 (1992).
P.Y. Hou and J. Stringer, Mater. Sci. Eng. A 202, 1 (1995).
S. Chevalier, C. Valot, G. Bonnet, J.C. Colson, and J.P. Larpin, Mater. Sci. Eng., A 343, 257 (2003).
P. Kofstad and K.P. Lillerud, J. Electrochem. Soc. 127, 2410 (1980).
C.A. Phalnikar, E.B. Evans, and W.M. Baldwin, J. Electrochem. Soc. 103, 429 (1956).
Acknowledgement
German Research Foundation (DFG) is gratefully acknowledged for supporting this work under Contract GA-7704/1-1.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dorcheh, A.S., Galetz, M.C. Challenges in Developing Oxidation-Resistant Chromium-Based Alloys for Applications Above 900°C. JOM 68, 2793–2802 (2016). https://doi.org/10.1007/s11837-016-2079-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-016-2079-7