Challenges in Developing Oxidation-Resistant Chromium-Based Alloys for Applications Above 900°C

Abstract

Chromium-based alloys are potential candidates for high-temperature structural applications. This article reviews the challenges of chromium and Cr-alloys used at temperatures higher than 900°C with the focus on their oxidation behavior. First, latest findings on the key environmental factors affecting the oxidation resistance such as volatilization and the impact of nitrogen in air are summarized. Oxidation resistance is addressed with regards to the effects of major alloying elements and reactive elements as well as its correlation with microstructure in multi-phase alloys. Secondly, the existing challenges to develop chromium alloys with enhanced high-temperature oxidation resistance are discussed. It is shown that volatilization and nitridation, the two major obstacles for the use of chromium alloys in air, can be significantly improved by alloy design.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Y. Gu, H. Harada, and Y. Ro, JOM J. Miner. Met. Mater. Soc. 56, 28 (2004).

    Article  Google Scholar 

  2. 2.

    A.H. Sully, E.A. Brandes, and A.G. Provan, J. Inst. Met. 81, 569 (1953).

    Google Scholar 

  3. 3.

    R.M. Parke, F.P. Bens, Symposium on Materials for Gas Turbines (American society of testing materials, 1946), p. 80.

  4. 4.

    W. Kroll, Zeitschrift für anorganische und allgemeine Chemie 226, 23 (1935).

    Article  Google Scholar 

  5. 5.

    American Society for Metals, Ductile Chromium and its Alloys ( American Society for Metals, United States Office of Ordnance Research, 1955).

  6. 6.

    H.B. Goodwin, E.A. Gilbert, C.M. Schwartz, and C.T. Greenidge, J. Electrochem. Soc. 100, 152 (1953).

    Article  Google Scholar 

  7. 7.

    E.A. Brandes, H.T. Greenaway, and H.E.N. Stone, Nature 178, 587 (1956).

    Article  Google Scholar 

  8. 8.

    K. Taneichi, T. Narushima, Y. Iguchi, and C. Ouchi, Mater. Trans. 47, 2540 (2006).

    Article  Google Scholar 

  9. 9.

    A.U. Seybolt and D.H. Haman, Trans. Metall. Soc. AIME 230, 1294 (1964).

    Google Scholar 

  10. 10.

    H. Johansen and G. Asai, J. Electrochem. Soc. 101, 604 (1954).

    Article  Google Scholar 

  11. 11.

    W.H. Smith and A.U. Seybolt, J. Electrochem. Soc. 103, 347 (1956).

    Article  Google Scholar 

  12. 12.

    D.M. Scruggs, US patents, No. 3175279 (1965).

  13. 13.

    D.J. Young and M. Cohen, J. Electrochem. Soc. 124, 775 (1977).

    Article  Google Scholar 

  14. 14.

    D. Caplan and M. Cohen, J. Electrochem. Soc. 108, 438 (1961).

    Article  Google Scholar 

  15. 15.

    W.C. Hagel, Trans. ASM 56, 583 (1963).

    Google Scholar 

  16. 16.

    E.A. Gulbransen and K.F. Andrew, J. Electrochem. Soc. 104, 334 (1957).

    Article  Google Scholar 

  17. 17.

    P. Kofstad, High Temperature Corrosion (Amsterdam: Elsevier, 1988).

    Google Scholar 

  18. 18.

    E.A. Gulbransen and K.F. Andrew, J. Electrochem. Soc. 99, 402 (1952).

    Article  Google Scholar 

  19. 19.

    H. Taimatsu, J. Electrochem. Soc. 146, 3686 (1999).

    Article  Google Scholar 

  20. 20.

    K.P. Lillerud and P. Kofstad, J. Electrochem. Soc. 127, 2397 (1980).

    Article  Google Scholar 

  21. 21.

    C. Wagner, J. Electrochem. Soc. 103, 627 (1956).

    Article  Google Scholar 

  22. 22.

    A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion (Delhi: ASM International, 2002).

  23. 23.

    K.P. Lillerud and P. Kofstad, Oxid. Met. 17, 195 (1982).

    Article  Google Scholar 

  24. 24.

    H. Hindam and D.P. Whittle, Oxid. Met. 18, 245 (1982).

    Article  Google Scholar 

  25. 25.

    D. Caplan and G.I. Sproule, Oxid. Met. 9, 459 (1975).

    Article  Google Scholar 

  26. 26.

    P. Kofstad and K.P. Lillerud, Oxid. Met. 17, 177 (1982).

    Article  Google Scholar 

  27. 27.

    L. Cadiou and J. Paidassi, Mem. Sci. Rev. Met. 66, 217 (1969).

    Google Scholar 

  28. 28.

    M. Michalik (Ph.D. Thesis, RWTH Aachen, Aachen, 2007).

  29. 29.

    G. Hultquist, B. Tveten, and E. Hörnlund, Oxid. Met. 54, 1 (2000).

    Article  Google Scholar 

  30. 30.

    S.R.J. Saunders, M. Monteiro, and F. Rizzo, Prog. Mater Sci. 53, 775 (2008).

    Article  Google Scholar 

  31. 31.

    P. Fox, D.G. Lees, and G.W. Lorimer, Oxid. Met. 36, 491 (1991).

    Article  Google Scholar 

  32. 32.

    D.J. Young, High Temperature Oxidation and Corrosion of Metals, 1st ed. (Netherland: Elsevier, 2008).

  33. 33.

    Y.W. Kim and G.R. Belton, Metall. Trans. 5, 1811 (1974).

  34. 34.

    H. Graham and H. Davis, J. Am. Ceram. Soc. 54, 89 (1971).

    Article  Google Scholar 

  35. 35.

    N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals (Cambridge: Cambridge University Press, 2006).

    Google Scholar 

  36. 36.

    R.T. Grimley, R.P. Burns, and M.G. Inghram, J. Chem. Phys. 34, 664 (1961).

    Article  Google Scholar 

  37. 37.

    C.S. Tedmon, J. Electrochem. Soc. 113, 766 (1966).

    Article  Google Scholar 

  38. 38.

    B. Pujilaksono, T. Jonsson, M. Halvarsson, I. Panas, J.-E. Svensson, and L.-G. Johansson, Oxid. Met. 70, 163 (2008).

    Article  Google Scholar 

  39. 39.

    M. Hänsel, W.J. Quadakkers, L. Singheiser, and H. Nickel (Ph.D. Thesis, Forschungszentrum Jülich GmbH, 1998).

  40. 40.

    A. Soleimani-Dorcheh, W. Donner, and M.C. Galetz, Mater. Corros. 65, 1143 (2014).

    Article  Google Scholar 

  41. 41.

    A. Soleimani-Dorcheh and M.C. Galetz, Oxid. Met. 84, 73 (2015).

    Article  Google Scholar 

  42. 42.

    P.J. Meschter, E.J. Opila, and N.S. Jacobson, Annu. Rev. Mater. Res. 43, 559 (2013).

    Article  Google Scholar 

  43. 43.

    E.J. Opila, N.S. Jacobson, and Q.N. Nguyen, Gaseous Hydroxides of High Temperature Materials (New London, NH: Gordon Conference, 2009).

  44. 44.

    E.J. Opila, D.L. Myers, N.S. Jacobson, I.M.B. Nielsen, D.F. Johnson, J.K. Olminsky, and M.D. Allendorf, J. Phys. Chem. A 111, 1971 (2007).

    Article  Google Scholar 

  45. 45.

    N. Jacobson, D. Myers, E. Opila, and E. Copland, J. Phys. Chem. Solids 66, 471 (2005).

    Article  Google Scholar 

  46. 46.

    O. Glemser and A. Müller, Zeitschrift für anorganische und allgemeine Chemie 334, 150 (1964).

    Article  Google Scholar 

  47. 47.

    A. Yamauchi, K. Kurokawa, and H. Takahashi, Oxid. Met. 59, 517 (2003).

    Article  Google Scholar 

  48. 48.

    E.J. Opila, Mater. Sci. Forum 461–464, 765 (2004).

    Article  Google Scholar 

  49. 49.

    E.J. Opila, J. Am. Ceram. Soc. 86, 1237 (2003).

    Article  Google Scholar 

  50. 50.

    X.G. Zheng and D.J. Young, Oxid. Met. 42, 163 (1994).

    Article  Google Scholar 

  51. 51.

    X.G. Zheng and D.J. Young, Mater. Sci. Forum 251–254, 567 (1997).

  52. 52.

    M. Hänsel, E. Turan, V. Shemet, D. Grüner, U. Breuer, D. Simon, B. Gorr, H.J. Christ, and W.J. Quadakkers, Mater. High Temp. 32, 160 (2015).

    Article  Google Scholar 

  53. 53.

    M. Michalik, S.L. Tobing, M. Hänsel, V. Shemet, W.J. Quadakkers, and D.J. Young, Mater. Corros. 65, 260 (2014).

    Article  Google Scholar 

  54. 54.

    D.J. Young, T.D. Nguyen, P. Felfer, J. Zhang, and J.M. Cairney, Scr. Mater. 77, 29 (2014).

    Article  Google Scholar 

  55. 55.

    T. Nguyen, J. Zhang, and D. Young, Oxid. Met., 1 (2015).

  56. 56.

    T. Mills, J. Less Common Met. 23, 317 (1971).

    Article  Google Scholar 

  57. 57.

    T. Mills, J. Less Common Met. 26, 223 (1972).

    Article  Google Scholar 

  58. 58.

    H. Ono-Nakazato, K. Taguchi, T. Usui, K. Tamura, and Y. Tomatsu, Metall. Mater. Trans. B 32, 1113 (2001).

    Article  Google Scholar 

  59. 59.

    K. Schwerdtfeger, Trans. Metall. Soc. AIME 239, 1432 (1968).

    Google Scholar 

  60. 60.

    K.N. Strafford, Corros. Sci. 19, 49 (1979).

    Article  Google Scholar 

  61. 61.

    T. Mills, Oxid. Met. 15, 437 (1981).

    Article  Google Scholar 

  62. 62.

    T. Mills, Oxid. Met. 15, 447 (1981).

    Article  Google Scholar 

  63. 63.

    L. Royer, X. Ledoux, S. Mathieu, and P. Steinmetz, Oxid. Met. 74, 79 (2010).

    Article  Google Scholar 

  64. 64.

    P. Kofstad, Oxid. Met. 24, 265 (1985).

    Article  Google Scholar 

  65. 65.

    Z.B. Qi, B. Liu, Z.T. Wu, F.P. Zhu, Z.C. Wang, and C.H. Wu, Thin Solid Films 544, 515 (2013).

    Article  Google Scholar 

  66. 66.

    L. Royer, S. Mathieu, C. Liebaut, and P. Steinmetz, Adv. Sci. Technol. 72, 46 (2011).

    Article  Google Scholar 

  67. 67.

    C.T. Liu, P.F. Tortorelli, J.A. Horton, and C.A. Carmichael, Mater. Sci. Eng., A 214, 23 (1996).

    Article  Google Scholar 

  68. 68.

    M.P. Brady, J.H. Zhu, C.T. Liu, P.F. Tortorelli, and L.R. Walker, Intermetallics 8, 1111 (2000).

    Article  Google Scholar 

  69. 69.

    M.P. Brady, P.F. Tortorelli, and L.R. Walker, Mater. High Temp. 17, 235 (2000).

    Article  Google Scholar 

  70. 70.

    M. Schütze, Corrosion and Environmental Degradation (New York: Wiley-VCH, 2000).

    Google Scholar 

  71. 71.

    A. Bhowmik, H.T. Pang, I.M. Edmonds, C.M.F. Rae, and H.J. Stone, Intermetallics 32, 373 (2013).

    Article  Google Scholar 

  72. 72.

    L. Royer, S. Mathieu, C. Liebaut, and P. Steinmetz, Mater. Sci. Forum 595, 1047 (2008).

  73. 73.

    A. Bhowmik, R.J. Bennett, B. Monserrat, G.J. Conduit, L.D. Connor, J.E. Parker, R.P. Thompson, C.N. Jones, and H.J. Stone, Intermetallics 48, 62 (2013).

    Article  Google Scholar 

  74. 74.

    V.M. Chad, M.I.S.T. Faria, G.C. Coelho, C.A. Nunes, and P.A. Suzuki, Mater. Charact. 59, 74 (2008).

    Article  Google Scholar 

  75. 75.

    J. Ma, Y. Gu, L. Shi, L. Chen, Z. Yang, and Y. Qian, J. Alloys Comput. 375, 249 (2004).

    Article  Google Scholar 

  76. 76.

    S.V. Raj, Mater. Sci. Eng. A 192–193, 583, (1995).

  77. 77.

    D.M. Shah and D.L. Anton, Mater. Sci. Eng. A 153, 402 (1992).

    Article  Google Scholar 

  78. 78.

    H. Bei, E.P. George, E.A. Kenik, and G.M. Pharr, Acta Mater. 51, 6241 (2003).

    Article  Google Scholar 

  79. 79.

    A. Gali, H. Bei, and E.P. George, MRS Proceedings, 980, 0980-II05-36 (2007).

  80. 80.

    T.A. Cruse and J.W. Newkirk, Mater. Sci. Eng. A 239–240, 410 (1997).

    Article  Google Scholar 

  81. 81.

    A. Gali, H. Bei, and E.P. George, Acta Mater. 57, 3823 (2009).

    Article  Google Scholar 

  82. 82.

    H. Bei, E.P. George, and G.M. Pharr, MRS Proc. 753, BB2.5 (2003).

    Google Scholar 

  83. 83.

    J.W. Newkirk and J.A. Hawk, Wear 251, 1361 (2001).

    Article  Google Scholar 

  84. 84.

    H. Bei (Ph.D. Thesis, University of Tennessee, 2003).

  85. 85.

    H. Bei, E.P. George, and G.M. Pharr, Scr. Mater. 51, 875 (2004).

    Article  Google Scholar 

  86. 86.

    H. Bei, G.M. Pharr, and E.P. George, J. Mater. Sci. 39, 3975 (2004).

    Article  Google Scholar 

  87. 87.

    A. Soleimani-Dorcheh and M. Galetz, Metall. Mater. Trans. A 45, 1639 (2014).

    Article  Google Scholar 

  88. 88.

    Y.R. He, R.A. Rapp, and P.P. Tortorelli, Mater. Sci. Eng., A 222, 109 (1997).

    Article  Google Scholar 

  89. 89.

    B.V. Cockeram, R.A. Rapp, Mater. Sci. Eng. A 192–193, 980, (1995).

  90. 90.

    Ö.N. Dogan, Oxid. Met. 69, 233 (2008).

    Article  Google Scholar 

  91. 91.

    S. Knittel, S. Mathieu, L. Portebois, and M. Vilasi, Intermetallics 47, 43 (2014).

  92. 92.

    H. Okamoto, J. Phys. Equilib. Diff. 29, 112 (2008).

    Article  Google Scholar 

  93. 93.

    R.H. Buck and R.B. Waterhouse, J. Less Common Met. 6, 36 (1964).

    Article  Google Scholar 

  94. 94.

    M.H. Sluiter, Phys. Rev. B 80, 220102 (2009).

    Article  Google Scholar 

  95. 95.

    M.P. Brady, I.G. Wright, and B. Gleeson, JOM 52, 16 (2000).

    Article  Google Scholar 

  96. 96.

    B.A. Pint, Proceedings of the John Stringer Symposium on High Temperature Corrosion (2003).

  97. 97.

    D. Naumenko, B.A. Pint, and W.J. Quadakkers, Oxid. Met. 86, 1 (2016).

  98. 98.

    P.Y. Hou, Current Topics on High Temperature Materials: JSPS report of the 123rd Committee on Heat Resisting Materials and Alloys (2007).

  99. 99.

    S. Chevalier, Mater. Corros. 65, 109 (2014).

    Article  Google Scholar 

  100. 100.

    D.P. Whittle and J. Stringer, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 295, 309 (1980).

    Article  Google Scholar 

  101. 101.

    B.A. Pint, J. Am. Ceram. Soc. 86, 686 (2003).

    Article  Google Scholar 

  102. 102.

    S. Chevalier, G. Bonnet, J.P. Larpin, and J.C. Colson, Corros. Sci. 45, 1661 (2003).

    Article  Google Scholar 

  103. 103.

    P.Y. Hou and J. Stringer, Oxid. Met. 38, 323 (1992).

    Article  Google Scholar 

  104. 104.

    P.Y. Hou and J. Stringer, Mater. Sci. Eng. A 202, 1 (1995).

    Article  Google Scholar 

  105. 105.

    S. Chevalier, C. Valot, G. Bonnet, J.C. Colson, and J.P. Larpin, Mater. Sci. Eng., A 343, 257 (2003).

    Article  Google Scholar 

  106. 106.

    P. Kofstad and K.P. Lillerud, J. Electrochem. Soc. 127, 2410 (1980).

    Article  Google Scholar 

  107. 107.

    C.A. Phalnikar, E.B. Evans, and W.M. Baldwin, J. Electrochem. Soc. 103, 429 (1956).

    Article  Google Scholar 

Download references

Acknowledgement

German Research Foundation (DFG) is gratefully acknowledged for supporting this work under Contract GA-7704/1-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali S. Dorcheh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dorcheh, A.S., Galetz, M.C. Challenges in Developing Oxidation-Resistant Chromium-Based Alloys for Applications Above 900°C. JOM 68, 2793–2802 (2016). https://doi.org/10.1007/s11837-016-2079-7

Download citation

Keywords

  • Oxide Scale
  • Oxidation Resistance
  • Oxidation Behavior
  • Oxidation Kinetic
  • Volatile Species