Skip to main content
Log in

Vision for Data and Informatics in the Future Materials Innovation Ecosystem

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The high cost and time typically expended in the successful deployment of new materials into high-performance commercial products is attributable to multiple factors. The most significant of these include the heavy reliance on experiments, the persisting disconnect between multiscale experiments and multiscale models, the lack of a broadly accessible data and knowledge infrastructure that can support the implementation of a holistic systems approach, and the lack of a suitable framework for facilitating and enhancing the critically needed cross-disciplinary collaborations. The emerging discipline of materials data science and informatics (MDSI) promises to address these key technology gaps. The potential benefits to the materials innovation enterprise that could accrue from an aggressive adoption of the novel concepts and toolsets offered by MDSI are examined. A specific vision is expounded for the role of MDSI in bridging the large gap that exists between the multiscale materials experiments and the multiscale materials models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.M. Pollock, J.E. Allison, D.G. Backman, M.C. Boyce, M. Gersh, E.A. Holm, R. LeSar, M. Long, A.C. Powell, J.J. Schirra, D.D. Whitis, and C. Woodward, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (Washington, DC: The National Acamedies Press, 2008).

    Google Scholar 

  2. G.J. Schmitz and U. Prahl, Integr. Mater. Manuf. Innov. (2014). doi:10.1186/2193-9772-3-2.

    Google Scholar 

  3. Materials Genome Initiative for Global Competitiveness (National Science and Technology Council, 2011), http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf. Accessed 29 Mar 2016.

  4. M. Drosback, JOM 66, 334 (2014).

    Article  Google Scholar 

  5. The Materials Genome Initative Stragetic Plan (Materials Genome Initiative National Science and Technology Council Committee on Technology Subcommittee on the Materials Genome Initiative, 2014). https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf. Accessed 29 Mar 2016.

  6. J. Warren, The materials genome initiative, data, open science, and NIST (Research Data Alliance, 2014). https://rd-alliance.org/sites/default/files/RDA-MGI-ODIpptx.pptx.pdf. Accessed 29 Mar 2016.

  7. T.W. Eager and M. King, Technol. Rev. 98, 42 (1995).

    Google Scholar 

  8. Implementing ICME in the Aerospace, Automotive, and Maritime Industries (The Minerals, Metals and Materials Society, 2013), http://www.tms.org/icmestudy/. Accessed 29 Mar 2016.

  9. Modeling Across Scales: A Roadmapping Study for Connecting Materials Models and Simulations Across Length and Time Scales (The Minerals, Metals and Materials Society, 2015). http://www.tms.org/multiscalestudy/. Accessed 29 Mar 2016.

  10. J.H. Panchal, S.R. Kalidindi, and D.L. McDowell, Comput. Aided Des. 45, 4 (2013).

    Article  Google Scholar 

  11. S.R. Kalidindi, Int. Mater. Rev. 60, 150 (2015).

    Article  Google Scholar 

  12. D.L. McDowell, Int. J. Plast 26, 1280 (2010).

    Article  Google Scholar 

  13. A.A. Salem, S.R. Kalidindi, and S.L. Semiatin, Acta Mater. 53, 3495 (2005).

    Article  Google Scholar 

  14. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater. 58, 1152 (2010).

    Article  Google Scholar 

  15. X.P. Wu, S.R. Kalidindi, C. Necker, and A.A. Salem, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39A, 3046 (2008).

    Article  Google Scholar 

  16. D.L. McDowell, J.H. Panchal, H.-J. Choi, C.C. Seepersad, J.K. Allen, and F. Mistree, Integrated Design of Multiscale, Multifunctional Materials and Products (New York: Elsevier Inc., 2010).

    Google Scholar 

  17. H.J. Choi, D.L. McDowell, J.K. Allen, D. Rosen, and F. Mistree, J. Mech. Des. 130, 031402 (2008).

    Article  Google Scholar 

  18. D.L. McDowell and S.R. Kalidindi, MRS Bull. 41, 326 (2016). doi:10.1557/mrs.2016.61.

    Article  Google Scholar 

  19. S.R. Kalidindi, D.B. Brough, S. Li, A. Cecen, A.L. Blekh, F. Yannick, P. Congo, and C. Campbell, MRS Bull. (2016). doi:10.1557/mrs.2016.164.

    Google Scholar 

  20. Digital Thread for Smart Manufacturing (National Institute of Standards and Technology, 2014). http://www.nist.gov/el/msid/syseng/dtsm.cfm. Accessed 29 Mar 2016.

  21. “DMDII” (Digital Manufacturing and Design Innovation Institute, 2016). http://dmdii.uilabs.org/. Accessed 29 Mar 2016.

  22. The Digital Twin (General Electric, 2015). http://gelookahead.economist.com/digital-twin/. Accessed 29 Mar 2016.

  23. “Digital Tapestry” (Lockheed Martin, 2016). http://www.lockheedmartin.com/us/ssc/digital-tapestry.html. Accessed 29 Mar 2016.

  24. A National Strategic Plan for Advanced Manufacturing (National Science and Technology Council Executive Office of the President, 2012). https://www.whitehouse.gov/sites/default/files/microsites/ostp/iam_advancedmanufacturing_strategicplan_2012.pdf. Accessed 29 Mar 2016.

  25. National Network for Manufacturing Innovation (Advanced Manufacturing National Program Office, 2015), https://www.manufacturing.gov/nnmi-institutes/. Accessed 29 Mar 2016.

  26. Materials Data Analytics: A Path-Finding Workshop (ASM International, 2015). http://www.asminternational.org/documents/10192/25925847/1-MDA-Henry+Intro+2015-10-08.pdf/a67c84f5-4f44-48e3-b096-5a70352b338a. Accessed 29 Mar 2016.

  27. Building an Integrated MGI Accelerator Network (Materials Accelerator Network, 2014). http://acceleratornetwork.org/events/past-events/building-an-integrated-mgi-accelerator-network/. Accessed 29 Mar 2016.

  28. J.H. Forsmark, J.W. Zindel, L. Godlewski, J. Zheng, J.E. Allison, and M. Li, Integr. Mater. Manuf. Innov. (2015). doi:10.1186/s40192-015-0033-0.

    Google Scholar 

  29. W.F. Maier, K. Stowe, and S. Sieg, Angewandte Chem. Int. Edition 46, 6016 (2007).

    Article  Google Scholar 

  30. R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam, ACS Comb. Sci. 13, 579 (2011).

    Article  Google Scholar 

  31. C.G. Simon and S. Lin-Gibson, Adv. Mater. 23, 369 (2011).

    Article  Google Scholar 

  32. J.C. Zhao, Chin. Sci. Bull. 59, 1652 (2014).

    Article  Google Scholar 

  33. M.L. Green, I. Takeuchi, and J.R. Hattrick-Simpers, J. Appl. Phys. 113, 231101 (2013).

    Article  Google Scholar 

  34. H. Springer and D. Raabe, Acta Mater. 60, 4950 (2012).

    Article  Google Scholar 

  35. F. Warchomicka, C. Poletti, M. Stockinger, and T. Henke, Int. J. Mater. Form. 3, 215 (2010).

    Article  Google Scholar 

  36. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley, Entropy 16, 494 (2014).

    Article  Google Scholar 

  37. J.C. Zhao, M.R. Jackson, L.A. Peluso, and L.N. Brewer, JOM 54, 42 (2002).

    Article  Google Scholar 

  38. J.C. Zhao, J. Mater. Res. 16, 1565 (2001).

    Article  Google Scholar 

  39. O.L. Warren and T.J. Wyrobek, Meas. Sci. Technol. 16, 100 (2005).

    Article  Google Scholar 

  40. V.V. Shastry, V.D. Divya, M.A. Azeem, A. Paul, D. Dye, and U. Ramamurty, Acta Mater. 61, 5735 (2013).

    Article  Google Scholar 

  41. S.M. Han, R. Shah, R. Banerjee, G.B. Viswanathan, B.M. Clemens, and W.D. Nix, Acta Mater. 53, 2059 (2005).

    Article  Google Scholar 

  42. E. Menendez, C. Templier, G. Abrasonis, J.F. Lopez-Barbera, J. Nogues, K. Temst, and J. Sort, Cryst. Eng. Commun. 16, 3515 (2014).

    Article  Google Scholar 

  43. C.A. Tweedie, D.G. Anderson, R. Langer, and K.J. Van Vliet, Adv. Mater. 17, 2599 (2005).

    Article  Google Scholar 

  44. G.W. Milton, The Theory of Composites (Cambridge: Cambridge University Press, 2002).

    Book  MATH  Google Scholar 

  45. W.F. Brown, J. Chem. Phys. 23, 1514 (1955).

    Article  Google Scholar 

  46. S. Torquato, Random Heterogeneous Materials (New York: Springer-Verlag, 2002).

    Book  MATH  Google Scholar 

  47. S. Torquato and G. Stell, J. Chem. Phys. 82, 980 (1985).

    Article  Google Scholar 

  48. S. Torquato and G. Stell, J. Chem. Phys. 77, 2071 (1982).

    Article  MathSciNet  Google Scholar 

  49. B.L. Adams, S.R. Kalidindi, and D. Fullwood, Microstructure Sensitive Design for Performance Optimization (New York: Elsevier Inc., 2013).

    Google Scholar 

  50. D.T. Fullwood, S.R. Niezgoda, B.L. Adams, and S.R. Kalidindi, Progress Mater. Sci. 55, 477 (2010).

    Article  Google Scholar 

  51. E. Kroner, Statistical modelling.Modelling Small Deformations of Polycrystals, ed. J. Gittus and J. Zarka (London: Elsevier Science Publishers, 1986), p. 229.

    Chapter  Google Scholar 

  52. E. Kroner, J. Mech. Phys. Solids 25, 137 (1977).

    Article  Google Scholar 

  53. S.R. Kalidindi, Hierarchical Materials Informatics (Oxford: Elsevier Inc., 2015).

    Google Scholar 

  54. S.R. Kalidindi, S.R. Niezgoda, and A.A. Salem, JOM 63, 34 (2011).

    Article  Google Scholar 

  55. S.R. Niezgoda, Y.C. Yabansu, and S.R. Kalidindi, Acta Mater. 59, 6387 (2011).

    Article  Google Scholar 

  56. A. Cecen, T. Fast, E.C. Kumbur, and S.R. Kalidindi, J. Power Sources 245, 144 (2014).

    Article  Google Scholar 

  57. S.R. Niezgoda, A.K. Kanjarla, and S.R. Kalidindi, Integr. Mater. Manuf. Innov. (2013). doi:10.1186/2193-9772-2-3.

    Google Scholar 

  58. What is Datafication?—Definition and Examples (Upfront Analytics, 2015). http://upfrontanalytics.com/datafication-definition-examples/. Accessed 29 Mar 2016.

  59. Materials Data Curation System (Github, 2014). https://github.com/usnistgov/MDCS. Accessed 29 Mar 2016.

  60. J.G. Kaufman and E.F. Begley, Adv. Mater. Process. 161, 35 (2003).

    Google Scholar 

  61. A.S. Varde, E.F. Begley, and S. Fahrenholz-Mann, MatML: XML for information exchange with materials property data, in Proceedings of the 4th International Workshop on Data Mining Standards, Services and Platforms (2006), p. 47.

  62. R.D. Chirico, M. Frenkel, V.V. Diky, K.N. Marsh, and R.C. Wilhoit, J. Chem. Eng. Data 48, 1344 (2003).

    Article  Google Scholar 

  63. The R Project for Statistical Computing (The R Project, 2016). https://www.r-project.org/. Accessed 29 Mar 2016.

  64. E. Jones, T. Oliphant, and P. Peterson, SciPy: Open Source Scientific Tools for Python (Enthought, 2016). http://www.scipy.org. Accessed 29 Mar 2016.

  65. S.V.D. Walt, S.C. Colbert, and G. Varoquaux, Comput. Sci. Eng. 13, 22 (2011).

    Article  Google Scholar 

  66. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesney, J. Mach. Learn. Res. 12, 2825 (2011).

    MathSciNet  Google Scholar 

  67. S. Seabold, J. Perktold, in Proceedings of the 9th Python in Science Conference (2010), p. 57.

  68. W. McKinney, in Proceedings of the 9th Python in Science Conference (2010), p. 51.

  69. Matlab: The language of Technical Computing (Mathworks, 2016). http://www.mathworks.com/products/matlab/index.html. Accessed 29 Mar 2016.

  70. D. Wheeler, D. Brough, T. Fast, S. Kalidindi, A. Reid, PyMKS: Materials Knowledge System in Python (Figshare, 2014). http://dx.doi.org/10.6084/m9.figshare.1015761. Accessed 29 Mar 2016.

  71. Materials Informatics Class Fall 2014 (Georgia Institute of Technology, 2014). http://materials-informatics-class-fall2014.github.io/. Accessed 29 Mar 2016.

  72. Materials Informatics Class Fall 2015 (Georgia Institute of Technology, 2015). http://materials-informatics-class-fall2015.github.io/. Accessed 29 Mar 2016.

  73. From Learning, Analytics, and Materials to Entrepreneurship and Leadership Doctoral Traineeship Program (Georgia Institute of Technology, 2016). http://www.flamel.gatech.edu/. Accessed 29 Mar 2016.

  74. K. Börner, N. Contractor, H.J. Falk-Krzesinski, S.M. Fiore, K.L. Hall, J. Keyton, B. Spring, D. Stokols, W. Trochim, and B. Uzzi, Sci. Transl. Med. 2, 49 (2010).

    Article  Google Scholar 

  75. D. Stokols, S. Misra, R.P. Moser, K.L. Hall, and B.K. Taylor, Am. J. Prev. Med. 35, S96 (2008).

    Article  Google Scholar 

  76. KNIME: Open for Innovation (KNIME, 2016). https://www.knime.org/. Accessed 29 Mar 2016.

  77. M.R. Berthold, N. Cebron, F. Dill, T.R. Gabriel, T. Kötter, T. Meinl, P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel, KNIME: the Konstanz information miner.Studies in Classification, Data Analysis, and Knowledge Organization, ed. H. Bock, W. Gaul, M. Vichi, and C. Weihs (New York, NY: Springer, 2008), p. 319.

    Google Scholar 

  78. MATIN: An e-Collaboration Platform for Materials Informatics (Georgia Institute of Technology, 2016). https://www.matin.gatech.edu. Accessed 5 July 2016.

  79. Georgia Tech Institute for Materials (Georgia Institute of Technology, 2016). http://www.materials.gatech.edu/. Accessed 29 March 2016.

  80. HUBzero: Platform for Scientific Collaboration (HUBzero Foundation, 2016). https://hubzero.org/. Accessed 29 Mar 2016.

  81. Integrated Computational Materials Engineering (National Academies of Engineering, 2008). http://www.nap.edu/catalog/12199/integrated-computational-materials-engineering-a-transformational-discipline-for-improved-competitiveness. Accessed 29 Mar 2016.

  82. A National Advanced Manufacturing Portal (Advanced Manufacturing National Program Office, 2016). www.manufacturing.gov. Accessed 5 July 2016.

  83. M. Göken, M. Kempf, M. Bordenet, and H. Vehoff, Surf. Interface Anal. 27, 302 (1999).

    Article  Google Scholar 

  84. S. Pathak and S.R. Kalidindi, Mater. Sci. Eng.: R: Rep. 91, 1 (2015).

    Article  Google Scholar 

  85. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  86. R.H. Taylor, F. Rose, C. Toher, O. Levy, K. Yang, M. Buongiorno, M.B. Buongiorno, and S. Curtarolo, Comput. Mater. Sci. 93, 178 (2014).

    Article  Google Scholar 

  87. L. Atzori, A. Iera, and G. Morabito, Comput. Netw. 54, 2787 (2010).

    Article  Google Scholar 

  88. Y. Demchenko, P. Grosso, C. De Laat, and P. Membrey, Addressing big data issues in scientific data infrastructure, in Proceedings of the 2013 International Conference on Collaboration Technologies and Systems (2013), p. 48.

  89. T. Fast, S.R. Niezgoda, and S.R. Kalidindi, Acta Mater. 59, 699 (2011).

    Article  Google Scholar 

  90. J. Wellendorff, K.T. Lundgaard, A. Møgelhøj, V. Petzold, D.D. Landis, J.K. Nørskov, T. Bligaard, and K.W. Jacobsen, Phys. Rev. B Condens. Matter Mater. Phys. 85, 235149 (2012).

    Article  Google Scholar 

  91. S. M. Arnold, B. A. Bednarcyk, N. Austin, I. Terentjev, D. Cebon, and W. Marsden, Information management workflow and tools enabling multiscale modeling within ICME Paradigm, in 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2016), p. 1174.

  92. B. Giardine, C. Riemer, R.C. Hardison, R. Burhans, L. Elnitski, P. Shah, Y. Zhang, D. Blankenberg, I. Albert, and J. Taylor, Genome Res. 15, 1451 (2005).

    Article  Google Scholar 

  93. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A. Lee, J. Tao, and Y. Zhao, Concurr. Comput. Pract. Exp. 18, 1039 (2006).

    Article  Google Scholar 

  94. Materials Data Challenge 2016 (Georgia Institute of Technology, 2016). http://www.flamel.gatech.edu/data-challenge-2016. Accessed 5 July 2016.

  95. Structural Materials Data Demonstration Project (ASM International, 2015). http://www.asminternational.org/web/cmdnetwork/projects/structural-materials. Accessed 29 Mar 2016.

  96. S.R. Kalidindi and M.D. Graef, Annu. Rev. Mater. Res. 45, 171 (2015).

    Article  Google Scholar 

  97. A.F. Rutkowski, D.R. Vogel, M. Van Genuchten, T.M.A. Bemelmans, and M. Favier, IEEE Trans. Prof. Commun. 45, 219 (2002).

    Article  Google Scholar 

  98. NRT: Data-Enabled Discovery and Design of Energy Materials (D3EM) (Texas A&M University, 2015). https://engineering.tamu.edu/news/2015/08/19/texas-am-receives-3-million-nsf-grant-to-train-graduate-students. Accessed 29 Mar 2016.

  99. Master’s Program in Materials Science and Simulation at Ruhr-University Bochum (Ruhr-University Bochum, 2016). http://www.icams.de/content/master-course-mss. Accessed 29 Mar 2016.

  100. ICME courses at Mississippi State University (Mississippi State University, 2015). https://icme.hpc.msstate.edu/mediawiki/index.php/Mississippi_State_University. Accessed 29 Mar 2016.

  101. ICME Masters certificate at Northwestern University (Northwestern University, 2016). http://www.mccormick.northwestern.edu/materials-science/documents/graduate/icme-brochure.pdf. Accessed 29 Mar 2016.

  102. CAMD Summer School on Electronic Structure Theory and Materials Design (Technical University of Denmark, 2016), http://www.fysik.dtu.dk/english/Research/CAMD/Events/Summer-school-2016. Accessed 29 Mar 2016.

  103. The University of Michigan Summer School on Integrated Computational Materials Education (University of Michigan, 2016). http://icmed.engin.umich.edu. Accessed 29 Mar 2016.

  104. IIMEC Summer School on Computational Materials Science Across Scales (Texas A&M University, 2015). http://engineering.tamu.edu/news/2015/08/03/texas-am-hosts-fourth-iimec-summer-school-on-computational-materials-science-across-scales. Accessed 29 Mar 2016.

  105. Lawrence Livermore National Laboratory Computational Chemistry and Materials Science Summer Institute (Lawrence Livermore National Laboratory, 2015). https://www-pls.llnl.gov/?url=jobs_and_internships-internships-ccms. Accessed 29 Mar 2016.

  106. Cyberinfrastructure for Atomistic Materials Science Center Summer Workshop (University of Florida, 2016). http://cams.mse.ufl.edu. Accessed 29 Mar 2016.

  107. Materials Data Science and Informatics (Coursera). https://www.coursera.org/learn/material-informatics. Accessed 20 July 2016.

Download references

Acknowledgements

SRK and AM acknowledge support from NIST 70NANB14H191 and internal funding from Georgia Tech’s IDEAS grant. DLM is grateful for the support of the Georgia Tech Institute for Materials, as well as the Carter N. Paden, Jr. Distinguished Chair in Metals Processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya R. Kalidindi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalidindi, S.R., Medford, A.J. & McDowell, D.L. Vision for Data and Informatics in the Future Materials Innovation Ecosystem. JOM 68, 2126–2137 (2016). https://doi.org/10.1007/s11837-016-2036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2036-5

Keywords

Navigation