Skip to main content
Log in

Semi-Supervised Approach to Phase Identification from Combinatorial Sample Diffraction Patterns

JOM Aims and scope Submit manuscript

Cite this article


Manual attribution of crystallographic phases from high-throughput x-ray diffraction studies is an arduous task, and represents a rate-limiting step in high-throughput exploration of new materials. Here, we demonstrate a semi-supervised machine learning technique, SS-AutoPhase, which uses a two-step approach to identify automatically phases from diffraction data. First, clustering analysis is used to select a representative subset of samples automatically for human analysis. Second, an AdaBoost classifier uses the labeled samples to identify the presence of the different phases in diffraction data. SS-AutoPhase was used to identify the metallographic phases in 278 diffraction patterns from a FeGaPd composition spread sample. The accuracy of SS-AutoPhase was >82.6% for all phases when 15% of the diffraction patterns were used for training. The SS-AutoPhase predicted phase diagram showed excellent agreement with human expert analysis. Furthermore it was able to determine and identify correctly a previously unreported phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. National Science and Technology Council, Materials Genome Initiative for Global Competitiveness (2011).

  2. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, Nat. Mater. 12, 191 (2013).

    Article  Google Scholar 

  3. National Science and Technology Council, Materials Genome Initiative Strategic Plan (2014).

  4. M.L. Green, J.R. Hattrick-Simpers, I. Takeuchi, S.C. Barron, A.M. Joshi, T. Chiang, A. Mehta, and A. Davydov, Fulfilling the Promise of the Materials Genome Initiative via High-Throughput Experimentation (2014).

  5. J.R. Hattrick-Simpers, C. Wen, and J. Lauterbach, Catal. Lett. 145, 290 (2014).

    Article  Google Scholar 

  6. D.J. Arriola, E.M. Carnahan, P.D. Hustad, R.L. Kuhlman, and T.T. Wenzel, Science 714, 312 (2006).

    Google Scholar 

  7. J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J.R. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, and I. Takeuchi, Nat. Mater. 4, 286 (2006).

    Article  Google Scholar 

  8. A. Shinde, D. Guevarra, J.A. Haber, J. Jin, and J.M. Gregoire, J. Mater. Res. 30, 442 (2015).

    Article  Google Scholar 

  9. W.F. Maier, K. Stowe, and S. Sieg, Angew. Chem. Int. Ed. Engl. 46, 6016 (2007).

    Article  Google Scholar 

  10. O.O. Famodu, J.R. Hattrick-Simpers, M. Aronova, K. Chang, M. Murakami, M. Wuttig, T. Okazaki, Y. Furuya, L.A. Knauss, L.A. Bendersky, F.S. Biancaniello, and I. Takeuchi, Mater. Trans. 45, 173 (2004).

    Article  Google Scholar 

  11. A. Holzwarth and W.F. Maier, Platin. Met. Rev. 44, 16 (2000).

    Google Scholar 

  12. K. Yang, J. Bedenbaugh, H. Li, M. Peralta, J.K. Bunn, J. Lauterbach, and J.R. Hattrick-Simpers, ACS Comb. Sci. 14, 372 (2012).

    Article  Google Scholar 

  13. G. Barr, W. Dong, and C.J. Gilmore, J. Appl. Crystallogr. 37, 243 (2004).

    Article  Google Scholar 

  14. G.J. Cunningham (Master’s Thesis, Instituto Superior Técnico, 2011).

  15. C.J. Long, J.R. Hattrick-Simpers, M. Murakami, R.C. Srivastava, I. Takeuchi, V.L. Karen, and X. Li, Rev. Sci. Instrum. 78, 072217 (2007).

    Article  Google Scholar 

  16. R. Le Bras, T. Damoulas, J.M. Gregoire, A. Sabharwal, C.P. Gomes, and R.B. Van Dover, Lect. Notes Comput. Sci. 6878, 508 (2011).

    Google Scholar 

  17. S. Ermon, R. Le Bras, S.K. Suram, J.M. Gregoire, C.P. Gomes, B. Selman, and R.B. Van Dover, arXiv. 1411, 7441 (2014).

  18. L.A. Baumes, M. Moliner, N. Nicoloyannis, and A. Corma, Cryst. Eng. Comm. 10, 10 (2008).

    Article  Google Scholar 

  19. C.J. Long, D. Bunker, X. Li, V.L. Karen, and I. Takeuchi, Rev. Sci. Instrum. 80, 1 (2009).

    Article  Google Scholar 

  20. A.G. Kusne, T. Gao, A. Mehta, L. Ke, M.C. Nguyen, K.M. Ho, V. Antropov, C.Z. Wang, M.J. Kramer, C. Long, and I. Takeuchi, Sci. Rep. 4, 6367 (2014).

    Article  Google Scholar 

  21. J.K. Bunn, S. Han, Y. Tong, Y. Zhang, J. Hu, and J.R. Hattrick-Simpers, J. Mater. Res. 30, 879 (2015).

    Article  Google Scholar 

  22. Citrin Informatics, Fe-Ga-Pd, Ciritrination,

  23. C. Long, CombiView,

  24. F. Pedregosa and G. Varoquaux, J. Mach. Learn. 12, 2825 (2011).

    MathSciNet  Google Scholar 

  25. J.A. Hartigan and M.A. Wong, J. R. Stat. Soc. C App. 28, 100 (1979).

    Google Scholar 

  26. D. Arthur and S. Vassilvitskii, Proceedings of Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, p. 1027 (2007).

  27. Y. Freund and R.E. Schapire, J. Comput. Syst. Sci. 55, 119 (1997).

    Article  MathSciNet  Google Scholar 

  28. K. Rajan, C. Suh, and P.F. Mendez, Stat. Anal. Data Min. 1, 361 (2009).

    Article  MathSciNet  Google Scholar 

  29. J.R. Hattrick-Simpers, J. Cui, M. Murakami, A. Orozco, L. Knauss, R.J. Booth, E.W. Greve, S.E. Lofland, M. Wuttig, and I. Takeuchi, Appl. Surf. Sci. 254, 734 (2007).

    Article  Google Scholar 

  30. J. Cui, T.W. Shield, and R.D. James, Acta Mater. 52, 35 (2004).

    Article  Google Scholar 

  31. J. Cui (PhD Thesis, University of Minnesota 2002).

  32. R.A. Kellogg, A.B. Flatau, A.E. Clark, M. Wun-Fogle, and T.A. Lograsso, J. Appl. Phys. 93, 8495 (2003).

    Article  Google Scholar 

  33. M. Wuttig, L. Dai, and J. Cullen, Appl. Phys. Lett. 80, 113501137 (2002).

    Article  Google Scholar 

  34. S. Hamann, M.E. Gruner, S. Irsen, J. Buschbeck, C. Bechtold, I. Kock, S.G. Mayr, A. Savan, S. Thienhaus, E. Quandt, E.S. Fohler, P. Entel, and A. Ludwig, Acta Mater. 58, 5949 (2010).

    Article  Google Scholar 

  35. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy, Comp. Mater. Sci. 58, 227 (2012).

    Article  Google Scholar 

  36. A. Jain, G. Hautier, C.J. Moore, S.P. Ong, C.C. Fischer, T. Mueller, K.A. Persson, and G. Ceder, Mater. Sci. 50, 2295 (2011).

    Google Scholar 

  37. D. Landis, J.S. Hummelshoj, S. Nestorov, J. Greeley, M. Dulak, T. Bligaard, J.K. Norskov, and K. Jaconsen, Comput. Sci. Eng. 14, 51 (2012).

    Article  Google Scholar 

  38. M. Klintenberg, The Electronic Structure Project,

  39. E. Tadmor, R. Elliot, and I. Takeuichi, Rise of Data in Materials Research,

  40. J.R. Hattrick-Simpers, J.M. Gregoire, and A.G. Kusne, APL Mater. 4, 053211 (2016).

    Article  Google Scholar 

Download references


The work is funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award DE-AR0000492. We would like to acknowledge the support of the South Carolina SmartState Center for Strategic Approaches to the Generation of Electricity (SAGE).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jason R. Hattrick-Simpers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 397 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunn, J.K., Hu, J. & Hattrick-Simpers, J.R. Semi-Supervised Approach to Phase Identification from Combinatorial Sample Diffraction Patterns. JOM 68, 2116–2125 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: