Skip to main content
Log in

Effect of Magnesium and Osteoblast Cell Presence on Hydroxyapatite Formation on (Ti,Mg)N Thin Film Coatings

  • Published:
JOM Aims and scope Submit manuscript

Abstract

TiN and (Ti,Mg)N thin film coatings were deposited on Ti substrates by an arc-physical vapor deposition technique. The effect of cell presence on hydroxyapatite (HA) formation was investigated using surfaces with four different Mg contents (0, 8.1, 11.31, and 28.49 at.%). Accelerated corrosion above 10 at.% Mg had a negative effect on the performance in terms of both cell proliferation and mineralization. In the absence of cells, Mg-free TiN coatings and low-Mg (8.1 at.%)-doped (Ti,Mg)N surfaces led to an early HA deposition (after 7 days and 14 days, respectively) in cell culture medium (DMEM), but the crystallinity was low. More crystalline HA structures were obtained in the presence of the cells. HA deposits with an ideal Ca/P ratio were obtained at least a week earlier, at day 14, in TiN and low-Mg (8.1 at.%)-doped (Ti,Mg)N compared with that of high-Mg-containing surfaces (>10 at.%). A thicker mineralized matrix was formed on low-Mg (8.1 at.%)-doped (Ti,Mg)N relative to that of the TiN sample. Low-Mg doping (<10 at.%) into TiN coatings resulted in better cell proliferation and thicker mineralized matrix formation, so it could be a promising alternative for hard tissue applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Schwarz, M. Wieland, Z. Schwartz, G. Zhao, F. Rupp, J. Geis-Gerstorfer, A. Schedle, N. Broggini, M.M. Bornstein, D. Buser, S.J. Ferguson, J. Becker, B.D. Boyan, and D.L. Cochran, J. Biomed. Mater. Res. B Appl. Biomater. 88B, 544 (2009).

    Article  Google Scholar 

  2. K. Ijiri, S. Matsunaga, K. Fukuyama, S. Maeda, T. Sakou, M. Kitano, and I. Senba, Anticancer Res. 16, 2853 (1996).

    Google Scholar 

  3. J. Nyberg, S. Hertzman, B. Svensson, and C.B. Johansson, Int. J. Oral Maxillofac. Implants 28, 739 (2013).

    Article  Google Scholar 

  4. A. Gyorgyey, K. Ungvari, G. Kecskemeti, J. Kopniczky, B. Hopp, A. Oszko, I. Pelsoczi, Z. Rakonczay, K. Nagy, and K. Turzo, Mater. Sci. Eng. C. Mater. Biol. Appl. 33, 4251 (2013).

    Article  Google Scholar 

  5. E. Chichti, G. Henrion, F. Cleymand, M. Jamshidian, M. Linder, and E. Arab-Tehrany, Plasma Process. Polym. 10, 535 (2013).

    Article  Google Scholar 

  6. S. Bauer, P. Schmuki, K. von der Mark, and J. Park, Prog. Mater Sci. 58, 261 (2013).

    Article  Google Scholar 

  7. S.W. Myung, Y.M. Ko, and B.H. Kim, Appl. Surf. Sci. 287, 62 (2013).

    Article  Google Scholar 

  8. B. Leukers, H. Gulkan, S.H. Irsen, S. Milz, C. Tille, M. Schieker, and H. Seitz, J. Mater. Sci. Mater. Med. 16, 1121 (2005).

    Article  Google Scholar 

  9. J. Huang, S.M. Best, W. Bonfield, and T. Buckland, Acta Biomater. 6, 241 (2010).

    Article  Google Scholar 

  10. J. Shi, L.L. Dong, F.M. He, S.F. Zhao, and G.L. Yang, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 116, E311 (2013).

    Article  Google Scholar 

  11. M. Wang, N.J. Castro, J. Li, M. Keidar, and L.G. Zhang, J. Nanosci. Nanotechnol. 12, 7692 (2012).

    Article  Google Scholar 

  12. W. Suchanek and M. Yoshimura, J. Mater. Res. 13, 94 (1998).

    Article  Google Scholar 

  13. Y. Tian, S.Y. Ding, H. Peng, S.M. Lu, G.P. Wang, L. Xia, and P.Z. Wang, Appl. Surf. 261, 25 (2012).

    Article  Google Scholar 

  14. F. Ren, Y. Leng, R. Xin, and X. Ge, Acta Biomater. 6, 2787 (2010).

    Article  Google Scholar 

  15. B. Bracci, P. Torricelli, S. Panzavolta, E. Boanini, R. Giardino, and A. Bigi, J. Inorg. Biochem. 103, 1666 (2009).

    Article  Google Scholar 

  16. S. Diallo-Garcia, D. Laurencin, J.M. Krafft, S. Casale, M.E. Smith, H. Lauron-Pernot, and G. Costentin, Phys. Chem. C 115, 24317 (2011).

    Article  Google Scholar 

  17. S. Onder, F.N. Kok, K. Kazmanli, and M. Urgen, Mater. Sci. Eng. C Mater. Biol. Appl. 33, 4337 (2013).

    Article  Google Scholar 

  18. Y.F. Zhao, C.Z. Chen, and D.G. Wang, Surf. Rev. Lett. 12, 401 (2005).

    Article  Google Scholar 

  19. M. Roy, A. Bandyopadhyay, and S. Bose, J. Biomed. Mater. Res. B Appl. Biomater. 99B, 258 (2011).

    Article  Google Scholar 

  20. E. van der Wal, A.M. Vredenberg, P.J. Ter Brugge, J.G.C. Wolke, and J.A. Jansen, Biomaterials 27, 1333 (2006).

    Article  Google Scholar 

  21. W.C. Xue, X.Y. Liu, X.B. Zheng, and C.X. Ding, J. Biomed. Mater. Res. A 74A, 553 (2005).

    Article  Google Scholar 

  22. C. Massaro, M.A. Baker, F. Cosentino, P.A. Ramires, S. Klose, and E. Milella, J. Biomed. Mater. Res. 58, 651 (2001).

    Article  Google Scholar 

  23. V. Nelea, C. Morosanu, M. Iliescu, and I.N. Mihailescu, Appl. Surf. 228, 346 (2004).

    Article  Google Scholar 

  24. P. Habibovic, F. Barrere, C.A. van Blitterswijk, K. de Groot, and P. Layrolle, J. Am. Ceram. 85, 517 (2002).

    Article  Google Scholar 

  25. P.G. Koutsoukos, A.N. Kofina, and D.G. Kanellopoulou, Pure Appl. Chem. 79, 825 (2007).

    Article  Google Scholar 

  26. J. Venugopal, R. Rajeswari, M. Shayanti, S. Low, A. Bongso, V.R.G. Dev, G. Deepika, A.T. Choon, and S. Ramakrishna, J. Biomater. Sci. Polym. E. 24, 170 (2013).

    Google Scholar 

  27. H.X. Zhao, W.J. Dong, Y.Y. Zheng, A.P. Liu, J.M. Yao, C.R. Li, W.H. Tang, B.Y. Chen, G. Wang, and Z. Shi, Biomaterials 32, 5837 (2011).

    Article  Google Scholar 

  28. J.W. Wang, J. de Boer, and K. de Groot, J. Biomed. Mater. Res. 90A, 664 (2009).

    Article  Google Scholar 

  29. J.M. Anderson, A. Rodriguez, and D.T. Chang, Semin. Immunol. 20, 86 (2008).

    Article  Google Scholar 

  30. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Prog. Mater Sci. 54, 397 (2009).

    Article  Google Scholar 

  31. G. Ciobanu and O. Ciobanu, Mater. Sci. Eng. C Mater. Biol. Appl. 33, 1683 (2013).

    Article  Google Scholar 

  32. G. Ciobanu, S. Ilisei, C. Luca, G. Carja, and O. Ciobanu, Prog. Org. Coat. 74, 648 (2012).

    Article  Google Scholar 

  33. G.T. Kose, F. Korkusuz, P. Korkusuz, N. Purali, A. Ozkul, and V. Hasirci, Biomaterials 24, 4999 (2003).

    Article  Google Scholar 

  34. L. Berzina-Cimdina and N. Borodajenko, Infrared Spectroscopy Materials Science, Engineering and Technology, ed. T. Theophile (Rijeka, Croatia: InTech, 2012), pp. 123–148.

  35. W. Zhang, S.S. Liao, and F.Z. Cui, Chem. Mater. 15, 3221 (2003).

    Article  Google Scholar 

  36. S. Roessler, R. Born, D. Scharnweber, H. Worch, A. Sewing, and M. Dard, J. Mater. Sci. Mater. Med. 12, 871 (2001).

    Article  Google Scholar 

  37. S. Meejoo, W. Maneeprakorn, and P. Winotai, Thermochim. Acta 447, 115 (2006).

    Article  Google Scholar 

  38. S. Raynaud, E. Champion, D. Bernache-Assollant, and P. Thomas, Biomaterials 23, 1065 (2002).

    Article  Google Scholar 

  39. Y.H. Yun, Z.Y. Dong, Z.Q. Tan, and M.J. Schulz, Anal. Bioanal. Chem. 396, 3009 (2010).

    Article  Google Scholar 

  40. M. Leidi, F. Dellera, M. Mariotti, and J.A.M. Maier, Magnes. Res. 24, 1 (2011).

    Google Scholar 

  41. C.M. Serre, M. Papillard, P. Chavassieux, J.C. Voegel, and G. Boivin, J. Biomed. Mater. Res. 42, 626 (1998).

    Article  Google Scholar 

  42. S. Onder, A.C. Calikoglu-Koyuncu, K. Kazmanlı, M. Urgen, G. Torun-Kose, and F.N. Kok, New Biotechnol. 32, 747 (2015).

    Article  Google Scholar 

  43. S.H. Kwon, Y.K. Jun, S.H. Hong, and H.E. Kim, J. Eur. Ceram. 23, 1039 (2003).

    Article  Google Scholar 

  44. H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, and M. Shakibaei, J. Biomed. Mater. Res. 62, 175 (2002).

    Article  Google Scholar 

  45. Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, T. Kubo, Y. Akagawa, Y. Hamada, J. Takahashi, and N. Matsuura, J. Biomed. Mater. Res. 62, 99 (2002).

    Article  Google Scholar 

  46. Y.D. Kwon, D.W. Lee, and S.O. Hong, J. Adv. Prosthodont. 6, 157 (2014).

    Article  Google Scholar 

  47. J.W. Park, Y.J. Kim, J.H. Jang, and H. Song, Clin. Oral Implants Res. 21, 1278 (2010).

    Article  Google Scholar 

  48. K. Ajroud, T. Sugimori, W.H. Goldmann, D.M. Fathallah, J.P. Xiong, and M.A. Arnaout, J. Biol. Chem. 279, 25483 (2004).

    Article  Google Scholar 

  49. M.S.S. Sprio, S. Panseri, M. Iafisco, A. Ruffini, S. Minardi, and A. Tampieri, Bone Substitute Biomaterials, ed. K. Mallick (London: Woodhead Publishing, 2014), p. 3.

  50. W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas, and K.S. TenHuisen, Biomaterials 25, 4647 (2004).

    Article  Google Scholar 

  51. L.C. Li, J.C. Gao, and Y. Wang, Surf. Coat. Technol. 185, 92 (2004).

    Article  Google Scholar 

  52. F. Barrere, C.A. van Blitterswijk, K. de Groot, and P. Layrolle, Biomaterials 23, 2211 (2002).

    Article  Google Scholar 

  53. Y.-H. Leem, K.S. Lee, J.H. Kim, H.K. Seok, J.S. Chang, and D.H. Lee, J. Tissue Eng. Regen. Med. (2014). doi:10.1002/term.1861.

    Google Scholar 

  54. A. Krause, E.A. Cowles, and G. Gronowicz, J. Biomed. Mater. Res. 52, 738 (2000).

    Article  Google Scholar 

  55. A. Bozec, L. Bakiri, M. Jimenez, T. Schinke, M. Amling, and E.F. Wagner, J. Cell Biol. 190, 1093 (2010).

    Article  Google Scholar 

  56. H. Kuwahara, Y. Al-Abdullat, N. Mazaki, S. Tsutsumi, and T. Aizawa, Mater. Trans. Jim 42, 1317 (2001).

    Article  Google Scholar 

  57. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).

    Article  Google Scholar 

  58. S. Boonrungsiman, E. Gentleman, R. Carzaniga, N.D. Evans, D.W. McComb, A.E. Porter, and M.M. Stevens, Proc. Natl Acad. Sci. U.S.A. 109, 14170 (2012).

    Article  Google Scholar 

  59. Y.F. Jiao, Q.L. Feng, and X.M. Li, Mater. Sci. Eng. C Mater. Biol. Appl. 26, 648 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by “The Scientific and Research Council of Turkey” (TUBITAK –Project #112M339). The authors gratefully thank the ITU Graduate School of Science, Engineering and Technology for ITU-BAP Graduate Student Project #34525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Nese Kok.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11837_2016_2029_MOESM1_ESM.tif

Supplementary Fig. S-1 HA nucleation on (a) TiN after 7 days and on (b) 8.1, (c) 11.31, and (d) 28.49 at.% Mg-doped (Ti,Mg)N surfaces after 14 days of incubation. Arrows show droplets. Inserts show a closer look for HA nucleation sites (dark fields on the surfaces) (TIFF 1933 kb)

11837_2016_2029_MOESM2_ESM.tif

Supplementary Fig. S-2 SEM micrograph showing the general behavior of hFOB cells on 8.1 at.% Mg-doped TiN surfaces at (a) 7, (b) 14, (c) 21, and (d) 35 days (TIFF 1132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onder, S., Calikoglu-Koyuncu, A.C., Torun Kose, G. et al. Effect of Magnesium and Osteoblast Cell Presence on Hydroxyapatite Formation on (Ti,Mg)N Thin Film Coatings. JOM 69, 1195–1205 (2017). https://doi.org/10.1007/s11837-016-2029-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2029-4

Keywords

Navigation