JOM

, Volume 68, Issue 8, pp 2045–2052 | Cite as

The Materials Data Facility: Data Services to Advance Materials Science Research

Article

Abstract

With increasingly strict data management requirements from funding agencies and institutions, expanding focus on the challenges of research replicability, and growing data sizes and heterogeneity, new data needs are emerging in the materials community. The materials data facility (MDF) operates two cloud-hosted services, data publication and data discovery, with features to promote open data sharing, self-service data publication and curation, and encourage data reuse, layered with powerful data discovery tools. The data publication service simplifies the process of copying data to a secure storage location, assigning data a citable persistent identifier, and recording custom (e.g., material, technique, or instrument specific) and automatically-extracted metadata in a registry while the data discovery service will provide advanced search capabilities (e.g., faceting, free text range querying, and full text search) against the registered data and metadata. The MDF services empower individual researchers, research projects, and institutions to (I) publish research datasets, regardless of size, from local storage, institutional data stores, or cloud storage, without involvement of third-party publishers; (II) build, share, and enforce extensible domain-specific custom metadata schemas; (III) interact with published data and metadata via representational state transfer (REST) application program interfaces (APIs) to facilitate automation, analysis, and feedback; and (IV) access a data discovery model that allows researchers to search, interrogate, and eventually build on existing published data. We describe MDF’s design, current status, and future plans.

Keywords

Materials data publication data management data preservation software as a service 

References

  1. 1.
    J.P. Holdren, Materials Genome Initiative for Global Competitiveness (National Science and Technology Council OSTP, Washington, USA, 2011).Google Scholar
  2. 2.
    A. White, MRS Bull. 37, 715 (2012).CrossRefGoogle Scholar
  3. 3.
    J.J. de Pablo, B. Jones, C.L. Kovacs, V. Ozolins, and A.P. Ramirez, Curr. Opin. Solid State Mater. Sci. 18, 99 (2014).CrossRefGoogle Scholar
  4. 4.
    A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Appl. Mater. 1, 011002 (2013).CrossRefGoogle Scholar
  5. 5.
    J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM 65, 1501 (2013).CrossRefGoogle Scholar
  6. 6.
    T.N. Bhat, L.M. Bartolo, U.R. Kattner, C.E. Campbell, and J.T. Elliott, JOM 67, 1866 (2015).CrossRefGoogle Scholar
  7. 7.
    NIST Repositories (National Institute of Standards and Technology, 2016), https://materialsdata.nist.gov/dspace/xmlui/. Accessed 31 March 2016.
  8. 8.
    NREL MatDB (National Renewable Energy Laboratory, 2016), http://materials.nrel.gov. Accessed 31 March 2016.
  9. 9.
    MatNavi (National Institute for Materials Science, 2016), http://mits.nims.go.jp/index_en.html. Accessed 31 March 2016.
  10. 10.
    S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L. Hart, S. Sanvito, M. Buongiorno-Nardelli, and N. Mingo, Comput. Mater. Sci. 58, 227 (2012).CrossRefGoogle Scholar
  11. 11.
    The NoMaD Repository (NoMaD Team, 2016), http://nomad-repository.eu/cms/. Accessed 31 March 2016.
  12. 12.
    CMDNetwork (ASM International, 2016), http://www.asminternational.org/web/cmdnetwork. Accessed 31 March 2016.
  13. 13.
    Citrine Informatics, http://citrination.com. Accessed 31 March 2016.
  14. 14.
    G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozinsky, Comput. Mater. Sci. 111, 218 (2016).CrossRefGoogle Scholar
  15. 15.
    Zenodo, https://www.zenodo.org. Accessed 31 March 2016.
  16. 16.
    H. Tran, A. Mannodi-Kanakkithodi, C. Kim, V. Sharma, G. Pilania, and R. Ramprasad, Sci. Data 3, (2016).Google Scholar
  17. 17.
    Figshare (Digital Science & Research, 2016), https://figshare.com. Accessed 31 March 2016.
  18. 18.
    The Dataverse Project, http://dataverse.org. Accessed 31 March 2016.
  19. 19.
    PRedictive Integrated Structural Materials Science, http://www.prisms-center.org. Accessed 31 March 2016.
  20. 20.
    Materials Commons, https://materialscommons.org. Accessed 31 March 2016.
  21. 21.
    S.R. Kalidindi and M. De Graef, Annu. Rev. Mater. Res. 45, 171 (2015).CrossRefGoogle Scholar
  22. 22.
    Materials Data Facility, https://www.materialsdatafacility.org. Accessed 31 March 2016.
  23. 23.
    K. Chard, J. Pruyne, B. Blaiszik, R. Ananthakrishnan, S. Tuecke, and I. Foster, in E-Sci. E-Sci. 2015 IEEE 11th Int. Conf. On (IEEE, 2015), pp. 401–410.Google Scholar
  24. 24.
    I. Foster, IEEE Internet Comput. 15, 70 (2011).CrossRefGoogle Scholar
  25. 25.
    B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy, R. Kettimuthu, J. Kordas, M. Link, S. Martin, K. Pickett, and T. Steven, Commun. ACM 55, 81 (2012).CrossRefGoogle Scholar
  26. 26.
    K. Chard, S. Tuecke, and I. Foster, Cloud Comput. IEEE 1, 46 (2014).CrossRefGoogle Scholar
  27. 27.
    M. Smith, M. Barton, M. Bass, M. Branschofsky, G. McClellan, D. Stuve, R. Tansley, and J.H. Walker, DSpace: An open source dynamic digital repository (2003).Google Scholar
  28. 28.
    N. Paskin, Digital Object Identifier (DOI®) System, Third Edition, 2011.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Computation InstituteUniversity of ChicagoChicagoUSA
  2. 2.Department of Computer ScienceUniversity of ChicagoChicagoUSA
  3. 3.Mathematics and Computer Science DivisionArgonne National LaboratoryLemontUSA

Personalised recommendations