JOM

, Volume 68, Issue 6, pp 1672–1678 | Cite as

Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

  • Shelby A. Skoog
  • Girish Kumar
  • Peter L. Goering
  • Brian Williams
  • Jack Stiglich
  • Roger J. Narayan
Article

Abstract

Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

References

  1. 1.
    M.D. Bermúdez, F.J. Carrión, G. Martínez-Nicolás, and R. López, Wear 258, 693 (2005).CrossRefGoogle Scholar
  2. 2.
    M. Roy, V.K. Balla, S. Bose, and A. Bandyopadhyay, Adv. Eng. Mater. 12, B637 (2010).CrossRefGoogle Scholar
  3. 3.
    K.J. Welldon, G.J. Atkins, D.W. Howie, and D.M. Findlay, J. Biomed. Mater. Res. A 84, 691 (2008).CrossRefGoogle Scholar
  4. 4.
    D.M. Findlay, K. Welldon, G.J. Atkins, D.W. Howie, A.C. Zannettino, and D. Bobyn, Biomaterials 25, 2215 (2004).CrossRefGoogle Scholar
  5. 5.
    B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della, J. Valle, and J. Jacobs, Biomaterials 27, 4671 (2006).CrossRefGoogle Scholar
  6. 6.
    H. Kato, T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi, T. Miyazaki, H.M. Kim, and T. Kokubo, J. Biomed. Mater. Res. 53, 28 (2000).CrossRefGoogle Scholar
  7. 7.
    V.K. Balla, S. Bodhak, S. Bose, and A. Bandyopadhyay, Acta Biomater. 6, 3349 (2010).CrossRefGoogle Scholar
  8. 8.
    T. Sjöström, A.S. Brydone, R.D. Meek, M.J. Dalby, B. Su, and L.E. McNamara, Nanomedicine (Lond) 8, 89 (2013).CrossRefGoogle Scholar
  9. 9.
    M. Ramazanoglu and Y. Oshida, in Implant DentistryA Rapidly Evolving Practice, ed. by I. Turkyilmaz (InTech, 2011). doi:10.5772/16936
  10. 10.
    M.J. Dalby, D. McCloy, M. Robertson, H. Agheli, and D. Sutherland, Biomaterials 27, 2980 (2006).CrossRefGoogle Scholar
  11. 11.
    M.J. Dalby, D. McCloy, M. Robertson, C.D. Wilkinson, and R.O. Oreffo, Biomaterials 27, 1306 (2006).CrossRefGoogle Scholar
  12. 12.
    S. Oh, K.S. Brammer, Y.J. Li, D. Teng, A.J. Engler, S. Chien, and S. Jin, Proc. Natl. Acad. Sci. U.S.A. 106, 2130 (2009).CrossRefGoogle Scholar
  13. 13.
    Y. Song, Y. Ju, G. Song, and Y. Morita, Int. J. Nanomed. 8, 2745 (2013).Google Scholar
  14. 14.
    G. Mendonça, D.B.S. Mendonça, L.G.P. Simões, A.L. Araújo, E.R. Leite, A.L. Golin, F.J. Aragão, and L.F. Cooper, Mater. Sci. Eng., C 31, 1809 (2011).CrossRefGoogle Scholar
  15. 15.
    J. Park, S. Bauer, K. Von der Mark, and P. Schmuki, Nano Lett. 7, 1686 (2007).CrossRefGoogle Scholar
  16. 16.
    J. Park, S. Bauer, K.A. Schlegel, F.W. Neukam, K. von der Mark, and P. Schmuki, Small 5, 666 (2009).CrossRefGoogle Scholar
  17. 17.
    A.G. Hemmersam, M. Foss, J. Chevallier, and F. Besenbacher, Colloids Surf. B 43, 208 (2005).CrossRefGoogle Scholar
  18. 18.
    C.P. Sharma and W. Paul, J. Biomed. Mater. Res. 26, 1179–1184 (2004).CrossRefGoogle Scholar
  19. 19.
    P. Zhang, S. Wang, S. Wang, and L. Jiang, Small 11, 1939–1946 (2015).CrossRefGoogle Scholar
  20. 20.
    G.F. Muschler, C. Nakamoto, and L.G. Griffith, J. Bone Joint Surg. Am. 86A, 1541 (2004).Google Scholar
  21. 21.
    M.J. Biggs, R.G. Richards, N. Gadegaard, R.J. McMurray, S. Affrossman, C.D. Wilkinson, R.O. Oreffo, and M.J. Dalby, J. Biomed. Mater. Res. A 91, 195 (2009).CrossRefGoogle Scholar
  22. 22.
    M.J. Dalby, N. Gadegaard, R. Tare, A. Andar, M.O. Riehle, P. Herzyk, C.D. Wilkinson, and R.O. Oreffo, Nat. Mater. 6, 997 (2007).CrossRefGoogle Scholar
  23. 23.
    D. Khang, J. Choi, Y.M. Im, Y.J. Kim, J.H. Jang, S.S. Kang, T.H. Nam, J. Song, and J.W. Park, Biomaterials 33, 5997 (2012).CrossRefGoogle Scholar
  24. 24.
    K.K. Divine and P.L. Goering, Elements and their Compounds in the Environment, ed. E. Merian, M. Anke, M. Ihnat, and M. Stoeppler (Weinheim: Wiley, 2004), pp. 1087–1097.Google Scholar
  25. 25.
    J. Black, Clin. Mater. 16, 167 (1994).CrossRefGoogle Scholar
  26. 26.
    A.C. Miller, A.F. Fuciarelli, W.E. Jackson, E.J. Ejnik, C. Emond, S. Strocko, J. Hogan, N. Page, and T. Pellmar, Mutagenesis 13, 643 (1998).CrossRefGoogle Scholar
  27. 27.
    U. Dorn, D. Neumann, and M. Frank, J. Arthroplasty 29, 831 (2014).CrossRefGoogle Scholar
  28. 28.
    H.A. Ching, D. Choudhury, M.J. Nine, and N.A. Abu Osman, Sci. Technol. Adv. Mater. 15, 014402 (2014).CrossRefGoogle Scholar
  29. 29.
    C. Balagna, M.G. Faga, and S. Spriano, J. Nanosci. Nanotechnol. 11, 8994 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Shelby A. Skoog
    • 1
    • 2
  • Girish Kumar
    • 2
  • Peter L. Goering
    • 2
  • Brian Williams
    • 3
  • Jack Stiglich
    • 3
  • Roger J. Narayan
    • 1
  1. 1.Joint Department of Biomedical EngineeringUniversity of North Carolina and North Carolina State UniversityRaleighUSA
  2. 2.Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringUSA
  3. 3.UltrametPacoimaUSA

Personalised recommendations