Skip to main content
Log in

Zener Pinning of Grain Boundaries and Structural Stability of Immiscible Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Immiscible Cu-Ta alloys produced by mechanical alloying are currently the subject of intensive research due to their mechanical strength combined with extraordinary structural stability at high temperatures. Previous experimental and simulation studies suggested that grain boundaries (GBs) in Cu-Ta alloys are stabilized by Ta nano-clusters coherent with the Cu matrix. To better understand the stabilization effect of Ta, we performed atomistic computer simulations of GB–cluster interactions in Cu-Ta alloys with various compositions and GB velocities. The study focuses on a single plane GB driven by an applied shear stress due to the shear-coupling effect. The results of the simulations are in close quantitative agreement with the Zener model of GB pinning. This agreement and the large magnitude of the unpinning stress confirm that the structural stability of these alloys is due to the drastically decreased GB mobility rather than a reduction in GB energy. For comparison, we simulated GB motion in a random solid solution. While the latter also reduces the GB mobility, the effect is not as strong as in the presence of Ta clusters. GB motion in the random solution itself induces precipitation of Ta clusters due to short-circuit diffusion of Ta in GBs, suggesting a possible mechanism of cluster formation inside the grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.C. Koch, R.O. Scattergood, K.A. Darling, and J.E. Semones, J. Mater. Sci. 43, 7264 (2008)

    Article  Google Scholar 

  2. J.R. Trelewicz, and C.A. Schuh, Phys. Rev. B 79, 094112 (2009)

    Article  Google Scholar 

  3. T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science 337, 951 (2012)

    Article  Google Scholar 

  4. T. Chookajorn and C.A. Schuh, Phys. Rev. B 89, 064102 (2014)

    Article  Google Scholar 

  5. K.A. Darling, M.A. Tschopp, B.K. VanLeeuwen, M.A. Atwater, and Z.K. Liu, Comput. Mater. Sci. 84, 255 (2014)

    Article  Google Scholar 

  6. J.W. Cahn, Acta Metall. 10, 789 (1962)

    Article  Google Scholar 

  7. M.I. Mendelev and D.J. Srolovitz, Model. Simul. Mater. Sci. Eng. 10, R79 (2002)

    Article  Google Scholar 

  8. I. Toda-Caraballo, C. Capdevila, G. Pimentel, and C.G. De Andres, Comput. Mater. Sci. 68, 95 (2013)

    Article  Google Scholar 

  9. F. Abdeljawad and S.M. Foiles, Acta Mater. 101, 159 (2015)

    Article  Google Scholar 

  10. E. Nes, N. Ryum, and O. Hunderi, Acta Metall. 33, 11 (1985)

    Article  Google Scholar 

  11. W.B. Li and K.E. Easterling, Acta Metall. Mater. 38, 1045 (1990)

    Article  Google Scholar 

  12. P.A. Manohar, M. Ferry, and T. Chandra, ISIJ Int. 38, 913 (1998)

    Article  Google Scholar 

  13. T. Frolov, K.A. Darling, L.J. Kecskes, and Y. Mishin, Acta Mater. 60, 2158 (2012)

    Article  Google Scholar 

  14. K.A. Darling, A.J. Roberts, Y. Mishin, S.N. Mathaudhu, and L.J. Kecskes, J. Alloy Compd. 573, 142 (2013)

    Article  Google Scholar 

  15. K. Darling, M. Tschopp, R. Guduru, W. Yin, Q. Wei, and L. Kecskes, Acta Mater. 76, 168 (2014)

    Article  Google Scholar 

  16. B.C. Hornbuckle, T. Rojhirunsakool, M. Rajagopalan, T. Alam, G.P. Purja, P.R. Banerjee, K.N. Solanki, Y. Mishin, L.J. Kecskes, and K.A. Darling, JOM 67, 2802 (2015)

    Article  Google Scholar 

  17. T. Rojhirunsakool, K.A. Darling, M.A. Tschopp, G.P.P. Pun, Y. Mishin, R. Banerjee, and L.J. Kecskes, MRS Commun. 5, 333 (2015)

    Article  Google Scholar 

  18. E. Ma, Prog. Mater. Sci. 50, 413 (2005)

    Article  Google Scholar 

  19. N.Q. Vo, S.W. Chee, D. Schwen, X.A. Zhang, P. Bellon, and R.S. Averback, Scr. Mater. 63, 929 (2010)

    Article  Google Scholar 

  20. N.Q. Vo, J. Schäfer, R.S. Averbach, K. Albe, Y. Ashkenazy, and P. Bellon, Scr. Mater. 65, 660 (2011)

    Article  Google Scholar 

  21. S. Ozerinc, K. Tai, N.Q. Vo, P. Bellon, R.S. Averback, and W.P. King, Scr. Mater. 67, 720 (2012)

    Article  Google Scholar 

  22. R.A. Andrievski, J. Mater. Sci. 49, 1449 (2014)

    Article  Google Scholar 

  23. G.P. Purja Pun, K.A. Darling, L.J. Kecskes, and Y. Mishin, Acta Mater. 100, 377 (2015)

    Article  Google Scholar 

  24. E.O. Hall, Proc. Phys. Soc. Lond. B 64, 747 (1951)

    Article  Google Scholar 

  25. N.J. Petch, J. Iron Steel Inst. 174, 25 (1953)

    Google Scholar 

  26. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  Google Scholar 

  27. G.P. Purja Pun, V. Yamakov, and Y. Mishin, Model. Simul. Mater. Sci. Eng. 23, 065006 (2015)

    Article  Google Scholar 

  28. Y. Mishin, Model. Simul. Mater. Sci. Eng. 22, 045001 (2014)

    Article  Google Scholar 

  29. J.W. Cahn, Y. Mishin, and A. Suzuki, Philos. Mag. 86, 3965 (2006)

    Article  Google Scholar 

  30. J.W. Cahn, Y. Mishin, and A. Suzuki, Acta Mater. 54, 4953 (2006)

    Article  Google Scholar 

  31. J.W. Cahn and J.E. Taylor, Acta Mater. 52, 4887 (2004)

    Article  Google Scholar 

  32. Z.T. Trautt and Y. Mishin, Acta Mater. 60, 2407 (2012)

    Article  Google Scholar 

  33. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

  34. C. Schwink and A. Nortmann, Mater. Sci. Eng. A 234, 1 (1997)

    Article  Google Scholar 

  35. Y. Brechet and Y. Estrin, Acta Mater. 43, 955 (2006)

    Article  Google Scholar 

  36. M. Miodownik, E.A. Holm, and G.N. Hassold, Scr. Mater. 42, 1173 (2000)

    Article  Google Scholar 

  37. C.L. Di Prinzio, E. Druetta, and O.B. Nasello, Model. Simul. Mater. Sci. Eng. 21, 025007 (2013)

    Article  Google Scholar 

  38. L. Vanherpe, N. Moelans, B. Blanplain, and S. Vanderwalle, Comput. Mater. Sci. 49, 340 (2010)

    Article  Google Scholar 

  39. F. Uyar, S.R. Wilson, J. Gruber, S. Lee, S. Sintay, A.D. Rollett, and D.J. Srolovitz, Int. J. Mater. Res. 100, 543 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

R.K K. and Y.M. were supported by the U.S. Army Research Office under a Contract Number W911NF-15-1-0077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Mishin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koju, R.K., Darling, K.A., Kecskes, L.J. et al. Zener Pinning of Grain Boundaries and Structural Stability of Immiscible Alloys. JOM 68, 1596–1604 (2016). https://doi.org/10.1007/s11837-016-1899-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1899-9

Keywords

Navigation