Skip to main content
Log in

Thermoelectric Properties of Pristine and Doped Graphene Nanosheets and Graphene Nanoribbons: Part II

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In Part II of this study, approaches to improve the thermoelectric figure of merit (ZT) of graphene nanosheets and nanoribbons is discussed. The presence of vacancies in graphene is found to increase the ZT of zigzag graphene nanoribbons significantly. Graphene can be a promising material with much better thermoelectric performance than conventional thermoelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Maske (Masters Thesis, New Jersey Institute of Technology, 2015).

  2. Y. Lin, C. Norman, D. Srivastava, F. Azough, L. Wang, M. Robbins, K. Simpson, R. Freer, and I.A. Kinloch, ACS Appl Mater. Interfaces 7, 15898 (2015).

    Article  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  4. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (Abingdon: Taylor & Francis, 2010).

    Google Scholar 

  5. T. Tritt, Recent Trends in Thermoelectric Materials Research, Part Two (Atlanta: Elsevier, 2000).

    Google Scholar 

  6. P. Wei, W. Bao, Y. Pu, C.N. Lau, and J. Shi, Phys. Rev. Lett. 102, 166808 (2009).

    Article  Google Scholar 

  7. J.G. Checkelsky and N.P. Ong, Phys. Rev. B. 80, 081413(R) (2009).

    Article  Google Scholar 

  8. N.S. Sankeshwar, S.S. Kubakaddi and B.G. Mulimani, Advances in Graphene Science, ed. D.M. Aliofkhazraei (InTech, 2013), pp. 217–271.

  9. H. Zheng, H.J. Liu, X.J. Tan, H.Y. Lv, L. Pan, J. Shi, and X.F. Tang, Appl. Phys. Lett. 100, 093104 (2012).

    Article  Google Scholar 

  10. B. Jariwala, D. Shah, and N.M. Ravindra, J. Electron. Mater. 44, 1509 (2015).

    Article  Google Scholar 

  11. D. Bahamon, A. Pereira, and P. Schulz, Phys. Rev. B. 83, 155436 (2011).

    Article  Google Scholar 

  12. J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, and M. Batzill, Nat. Nano. 5, 326 (2010).

    Article  Google Scholar 

  13. H. Karamitaheri, N. Neophytou, M. Pourfath, R. Faez, and H. Kosina, J. Appl. Phys. 111, 093104 (2012).

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Ms. Soumya R. Belur for her assistance with the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ravindra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muley, S.V., Ravindra, N.M. Thermoelectric Properties of Pristine and Doped Graphene Nanosheets and Graphene Nanoribbons: Part II. JOM 68, 1660–1666 (2016). https://doi.org/10.1007/s11837-016-1872-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1872-7

Keywords

Navigation