JOM

, Volume 68, Issue 6, pp 1625–1633 | Cite as

Thermal Stability Comparison of Nanocrystalline Fe-Based Binary Alloy Pairs

  • B. G. Clark
  • K. Hattar
  • M. T. Marshall
  • T. Chookajorn
  • B. L. Boyce
  • C. A. Schuh
Article

Abstract

The widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest; yet, they have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dominated systems. Although traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloys can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdoch et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10 at.% Mg) with a predicted non-NC stable alloy (Fe-10 at.% Cu) using the same processing and characterization methodologies. Results show improved thermal stability of the Fe-Mg alloy in comparison with the Fe-Cu, and thermally-evolved microstructures that are consistent with those predicted by Monte Carlo simulations.

References

  1. 1.
    S.R. Agnew, B.R. Elliott, C.J. Youngdahl, K.J. Hemker, and J.R. Weertman, Mater. Sci. Eng. A 285, 391 (2000).CrossRefGoogle Scholar
  2. 2.
    D.H. Jeong, F. Gonzalez, G. Palumbo, K.T. Aust, and U. Erb, Scr. Mater. 44, 493 (2001).CrossRefGoogle Scholar
  3. 3.
    K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater. 51, 5743 (2003).CrossRefGoogle Scholar
  4. 4.
    Z.B. Wang, N.R. Tao, S. Li, W. Wang, G. Liu, J. Luc, and K. Lu, Mater. Sci. Eng. A 352, 144 (2003).CrossRefGoogle Scholar
  5. 5.
    R. Mishra, B. Basu, and R. Balasubramaniam, Mater. Sci. Eng. A 373, 370 (2004).CrossRefGoogle Scholar
  6. 6.
    M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
  7. 7.
    C.C. Koch, J. Mater. Sci. 42, 1403 (2007).CrossRefGoogle Scholar
  8. 8.
    M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma, Acta Mater. 55, 4041 (2007).CrossRefGoogle Scholar
  9. 9.
    B.L. Boyce and H.A. Padilla, Metall. Mater. Trans. A 42A, 1793 (2011).CrossRefGoogle Scholar
  10. 10.
    K. Lücke and K. Detert, Acta Metall. 5, 628 (1957).CrossRefGoogle Scholar
  11. 11.
    J.W. Cahn, Acta Metall. 10, 789 (1962).CrossRefGoogle Scholar
  12. 12.
    E. Nes, N. Ryum, and O. Hunderi, Acta Metall. 33, 11 (1985).CrossRefGoogle Scholar
  13. 13.
    M. Hillert, Acta Metall. 36, 3177 (1988).CrossRefGoogle Scholar
  14. 14.
    K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K.T. Aust, Scr. Metall. Mater. 25, 2711 (1991).CrossRefGoogle Scholar
  15. 15.
    A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer, and D.T. Wu, Acta Mater. 47, 2143 (1999).CrossRefGoogle Scholar
  16. 16.
    C.E. Krill, H. Ehrhardt, and R. Birringer, Z. Fur. Metall. 96, 1134 (2005).CrossRefGoogle Scholar
  17. 17.
    J.R. Trelewicz and C.A. Schuh, Phys. Rev. B 79, 094112 (2009).CrossRefGoogle Scholar
  18. 18.
    T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science 337, 951 (2012).CrossRefGoogle Scholar
  19. 19.
    H.A. Murdoch and C.A. Schuh, Acta Mater. 61, 2121 (2013).CrossRefGoogle Scholar
  20. 20.
    M. Saber, H. Kotan, C.C. Koch, and R.O. Scattergood, J. Appl. Phys. 113, 1 (2013).CrossRefGoogle Scholar
  21. 21.
    K.A. Darling, M.A. Tschopp, B.K. VanLeeuwen, M.A. Atwater, and Z.K. Liu, Computat. Mater. Sci. 84, 255 (2014).CrossRefGoogle Scholar
  22. 22.
    P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, and M.P. Harmer, Acta Mater. 62, 1 (2014).CrossRefGoogle Scholar
  23. 23.
    F. Abdeljawad and S.M. Foiles, Acta Mater. 101, 159 (2015).CrossRefGoogle Scholar
  24. 24.
    M.J. Rosen and J.T. Kunjappu, Surfactants and Interfacial Phenomena (New York: Wiley, 2012).CrossRefGoogle Scholar
  25. 25.
    D. McLean, Grain Boundaries in Metals (London: Oxford University Press, 1957).Google Scholar
  26. 26.
    M. Guttmann, Metall. Trans. A 8, 1383 (1977).CrossRefGoogle Scholar
  27. 27.
    J. Weissmüller, Nanostruct. Mater. 3, 261 (1993).CrossRefGoogle Scholar
  28. 28.
    R. Kirchheim, Acta Mater. 50, 413 (2002).CrossRefGoogle Scholar
  29. 29.
    H. Baker, Asm Handbook, Alloy Phase Diagrams, Vol. 03 (Materials Park: ASM International, 1992).Google Scholar
  30. 30.
    J.A. Knapp and D.M. Follstaedt, J. Mater. Res. 19, 218 (2004).CrossRefGoogle Scholar
  31. 31.
    Astm E112-13, Standard Test Methods for Determining Average Grain Size (West Conshohocken: ASTM International, 2013).Google Scholar
  32. 32.
    T. Chookajorn and C.A. Schuh, Phys. Rev. B 89, 064102 (2014).CrossRefGoogle Scholar
  33. 33.
    T. Chookajorn and C.A. Schuh, Acta Mater. 73, 128 (2014).CrossRefGoogle Scholar
  34. 34.
    T. Chookajorn, M. Park, and C.A. Schuh, J. Mater. Res. 30, 151 (2015).CrossRefGoogle Scholar
  35. 35.
    J. Eckert, J. Holzer, and W. Johnson, J. Appl. Phys. 73, 131 (1993).CrossRefGoogle Scholar
  36. 36.
    Z. Chen, N. Kioussis, and N. Ghoniem, Phys. Rev. B 80, 184104 (2009).CrossRefGoogle Scholar
  37. 37.
    Y.N. Gornostyrev, I.N. Kar’kin, and L.E. Kar’kina, Phys. Solid State 53, 1388 (2011).CrossRefGoogle Scholar
  38. 38.
    S.N. Mathaudhu and B.L. Boyce, JOM 67, 2785 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society (outside the U.S.) 2016

Authors and Affiliations

  • B. G. Clark
    • 1
  • K. Hattar
    • 2
  • M. T. Marshall
    • 2
  • T. Chookajorn
    • 3
    • 4
  • B. L. Boyce
    • 1
  • C. A. Schuh
    • 4
  1. 1.Materials Science CenterSandia National LaboratoriesAlbuquerqueUSA
  2. 2.Physical, Chemical, and Nano Sciences CenterSandia National LaboratoriesAlbuquerqueUSA
  3. 3.National Metal and Materials Technology Center (MTEC)Pathum ThaniThailand
  4. 4.Department of Materials Science and EngineeringMassachusetts Institute of Technology (MIT)CambridgeUSA

Personalised recommendations