Skip to main content
Log in

Production of Magnesium by Vacuum Aluminothermic Reduction with Magnesium Aluminate Spinel as a By-Product

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The Pidgeon process currently accounts for 85% of the world’s magnesium production. Although the Pidgeon process has been greatly improved over the past 10 years, such production still consumes much energy and material and creates much pollution. The present study investigates the process of producing magnesium by employing vacuum aluminothermic reduction and by using magnesite as material and obtaining magnesium aluminate spinel as a by-product. The results show that compared with the Pidgeon process, producing magnesium by vacuum aluminothermic reduction can save materials by as much as 50%, increase productivity up to 100%, and save energy by more than 50%. It can also reduce CO2 emission by up to 60% and realize zero discharge of waste residue. Vacuum aluminothermic reduction is a highly efficient, low-energy-consumption, and environmentally friendly method of producing magnesium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Eliezer, E. Aghion, and F.H. Froes, Adv. Perform. Mater. 5, 201 (1998).

    Article  Google Scholar 

  2. G. Hanko, H. Antrekowitsch, and P. Ebner, JOM 54, 52 (2002).

    Article  Google Scholar 

  3. B.R. Hua and Z. Jinshen, Resour. Ind. 5, 92 (2009).

    Google Scholar 

  4. R.E. Brown, Magnesium Technologies—Present and Future (San Diego, CA: TMS, 2011).

    Google Scholar 

  5. F. Cherubinia, M. Raugei, and S. Ulgiati, Resour. Conservat. Recycl. 52, 1093 (2008).

    Article  Google Scholar 

  6. G. Feng, N. Zuoren, W. Zhihong, and Z. Tie-yong, Chin. J. Nonferr. Metal. 16, 1456 (2006).

    Google Scholar 

  7. S. Ramakrishnan and P. Koltun, Resour. Conservat. Recycl. 42, 49 (2004).

    Article  Google Scholar 

  8. D. Minic, D. Manasijevic, and J. Dokic, J. Therm. Anal. Calorimetry 93, 411 (2008).

    Article  Google Scholar 

  9. H.E. Friedrich and B.L. Mordike, Magnesium Technology (Berlin: Springer, 2006), pp. 56–57.

    Google Scholar 

  10. H. Wenxin, F. Naixiang, and W. Yaowu, Magnesium Production by Vacuum Aluminothemic Reduction of a Mixture of Calcined Dolomite and Calcined Magnesite (San Diego, CA: TMS, 2011).

    Google Scholar 

  11. H.E. Friedrich and B.L. Mordike, Magnesium Technology (Berlin: Springer, 2006), pp. 56–57.

    Google Scholar 

  12. G. Qingfu, Chinese Patent 1246487C (2006).

  13. L. Zhongsheng, Chinese Patent 1,664,135A (2005).

  14. L.D. Rutledge and M.J. Andews, US Patent 3,782,922 (1974).

  15. W. Yaowu, P. Jianping, D. Yuezhong, and F. Naixiang, Chin. J. Vac. Sci. Technol. 33, 704 (2013).

    Google Scholar 

  16. F. Daxue, F. Naixiang, W. Yaowu, P. Jianping, and D. Yuezhong, Trans. Nonferr. Metall. Soc. China 24, 839 (2014).

    Article  Google Scholar 

  17. L. Krilova and N. Stevulova, J. Mater. Sci. 39, 5403 (2004).

    Article  Google Scholar 

  18. M.A. Serry, S.M. Hammad, and M.F. Zawrah, Br. Ceram. Trans. 97, 275 (1998).

    Google Scholar 

  19. L. Jiguang, T. Ikegami, L. Jongheun, T. Mori, and Y. Yajima, Ceram. Int. 27, 481 (2001).

    Article  Google Scholar 

  20. L.R. Pinga, A.-M. Azadb, and T.W. Dung, Mater. Res. Bull. 36, 1417 (2001).

    Article  Google Scholar 

  21. K.J.D. Mackenzie, J. Temuujin, T.S. Jadambaa, M.E. Smith, and P. Angerer, J. Mater. Sci. 35, 5529 (2000).

    Article  Google Scholar 

  22. T. Shiono, K. Shiono, K. Miyamoto, and G. Pezzotti, J. Am. Ceram. Soc. 83, 235 (2000).

    Article  Google Scholar 

  23. M. Fuhrer, A. Heya, and W.E. Lee, J. Eur. Ceram. Soc. 18, 813 (1998).

    Article  Google Scholar 

  24. C. Chenfeng and K. Yung-Chao, J. Am. Ceram. Soc. 81, 2957 (1998).

    Google Scholar 

  25. C. Dominguez and J. Chevalier, J. Eur. Ceram. Soc. 21, 907 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China for the financial support of the project (51404054 and 51304044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaowu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., You, J., Peng, J. et al. Production of Magnesium by Vacuum Aluminothermic Reduction with Magnesium Aluminate Spinel as a By-Product. JOM 68, 1728–1736 (2016). https://doi.org/10.1007/s11837-016-1865-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1865-6

Keywords

Navigation