Skip to main content
Log in

Direct Numerical Simulations in Solid Mechanics for Quantifying the Macroscale Effects of Microstructure and Material Model-Form Error

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Two fundamental approximations in macroscale solid-mechanics modeling are (1) the assumption of scale separation in homogenization theory and (2) the use of a macroscopic plasticity material model that represents, in a mean sense, the multitude of inelastic processes occurring at the microscale. With the goal of quantifying the errors induced by these approximations on engineering quantities of interest, we perform a set of direct numerical simulations (DNS) in which polycrystalline microstructures are embedded throughout a macroscale structure. The largest simulations model over 50,000 grains. The microstructure is idealized using a randomly close-packed Voronoi tessellation in which each polyhedral Voronoi cell represents a grain. An face centered cubic crystal-plasticity model is used to model the mechanical response of each grain. The overall grain structure is equiaxed, and each grain is randomly oriented with no overall texture. The detailed results from the DNS simulations are compared to results obtained from conventional macroscale simulations that use homogeneous isotropic plasticity models. The macroscale plasticity models are calibrated using a representative volume element of the idealized microstructure. Ultimately, we envision that DNS modeling will be used to gain new insights into the mechanics of material deformation and failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. U. Kocks, C. Tome, and H. Wenk (eds.), Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Material Properties (Cambridge University Press, New York, 1998)

    MATH  Google Scholar 

  2. F. Roters, P. Eisenlohr, T. Bieler, and D. Raabe, Crystal Plasticity Finite Element Methods: in Materials Science and Engineering (Wiley, Berlin, 2010)

    Book  Google Scholar 

  3. W. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014)

    Article  Google Scholar 

  4. K. Vemaganti and T. Oden, Comput. Methods Appl. Mech. Eng. 190, 6089 (2001)

    Article  MathSciNet  Google Scholar 

  5. A. Romkes, T. Oden, and K. Vemaganti, Mech. Mater. 38, 859 (2006)

    Article  Google Scholar 

  6. I. Temizer and P. Wriggers, Comput. Methods Appl. Mech. Eng. 200, 2639 (2011)

    Article  MathSciNet  Google Scholar 

  7. J. Lubliner, Plasticity Theory, Chap. 3.3 (Macmillan, New York, 1990)

    Google Scholar 

  8. W. Hosford, J. Appl. Mech. 39, 607 (1972)

    Article  Google Scholar 

  9. J. Vetter (ed.), Contemporary High Performance Computing: From Petascale to Exascale (Chapman and Hall/CRC, New York, 2013)

    Google Scholar 

  10. J. Bishop, J. Emery, R. Field, C. Weinberger, and D. Littlewood, Comput. Methods Appl. Mech. Eng. 287, 262 (2015)

    Article  MathSciNet  Google Scholar 

  11. V. Tikare, E. Homer, E. Hernandez-Rivera, J. Madison, E. Holm, and B. Patterson, Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes, Technical Report SAND2013-8440, Sandia National Laboratories, 2013

  12. S. Lee, G. Rohrer, and A. Rollett, Modell. Simul. Mater. Sci. Eng. 22, 025017 (2014)

    Article  Google Scholar 

  13. M. Ebeida, S. Mitchell, A. Patney, A. Davidson, and J. Owens, Comput. Graph. For. 31, 785 (2012)

    Google Scholar 

  14. L. Li, L. Shen, and G. Proust, Int. J. Num. Methods Eng. 103, 144 (2015)

    Article  MathSciNet  Google Scholar 

  15. A. Maniatty and P. Dawson, Int. J. Num. Methods Eng. 35, 1565 (1992)

    Article  Google Scholar 

  16. K. Matouš and A. Maniatty, Int. J. Num. Methods Eng. 60, 2313 (2004)

    Article  Google Scholar 

  17. Y. Zhang, T. Hughes, and C. Bajaj, Comput. Methods Appl. Mech. Eng. 199, 405 (2010)

    Article  Google Scholar 

  18. J. Qian, Y. Zhang, W. Wang, A. Lewis, M. Qidwai, and A. Geltmacher, Int. J. Num. Methods Eng. 82, 1406 (2010)

    MathSciNet  Google Scholar 

  19. C. Wang, Modell. Simul. Mater. Sci. Eng. 39, 35 (2007)

    Google Scholar 

  20. C. Battaile, J. Emery, L. Brewer, and B. Boyce, Philos. Mag. 95, 1069 (2015)

    Article  Google Scholar 

  21. H. Lim, R. Dingreville, L. Deibler, T. Buchheit, and C. Battaile, Comput. Mater. Sci. 117, 437 (2016)

    Article  Google Scholar 

  22. R. Quey, P. Dawson, and F. Barbe, Comput. Methods Appl. Mech. Eng. 200, 1729 (2011)

    Article  Google Scholar 

  23. H. Lim, F. Abdeljawad, S. Owen, B. Hanks, J. Foulk, and C. Battaile, Modell. Simul. Mater. Sci. Eng. (2016, accepted)

  24. T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Int. J. Solids Struct. 40, 3647 (2003)

    Article  Google Scholar 

  25. P. Eisenlohr, M. Diehl, R. Lebenshohn, and F. Roters, Int. J. Plast. 46, 37 (2013)

    Article  Google Scholar 

  26. D. Pyle, J. Lu, D. Littlewood, and A. Maniatty, Comput. Mech. 52, 135 (2013)

    Article  Google Scholar 

  27. SIERRA Solid Mechanics Team, Sierra/SolidMechanics 4.36 User’s Guide, SAND report SAND2015-2199, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2015

  28. C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, Int. J. Num. Methods Eng. 50, 1523 (2001)

    Article  MathSciNet  Google Scholar 

  29. CUBIT Geometry and Meshing Toolkit, Version 13.2, https://cubit.sandia.gov/public/13.2/Cubit-13.2-announcement.html, 2012

  30. Integrated computational materials engineering (ICME): Implementing icme in the aerospace, automotive, and maritime industries, The Minerals, Metals & Materials Society, http://www.tms.org/ICMEstudy, 2013

  31. N. Provatas and K. Elder, Phase-Field Methods in Material Science and Engineering (Wiley, Weinheim, 2010)

    Book  Google Scholar 

  32. E. Holm and C. Battaile, JOM 53, 20 (2001)

    Article  Google Scholar 

  33. S. Plimpton, C. Battaile, M. Chandross, L. Holm, A. Thompson, V. Tikare, G. Wagner, E. Webb, and X. Zhou, Crossing the mesoscale no-man’s land via parallel kinetic Monte Carlo, Technical Report SAND2009-6226, Sandia National Laboratories, 2009

  34. E. Lazar, J. Mason, R. MacPherson, and D. Srolovitz, Acta Mater. 59, 6837 (2011)

    Article  Google Scholar 

  35. J. Arvo, Fast random rotation matrices, in Graphics Gems III, ed. by D. Kirk (Academic, New York, 1992)

    Google Scholar 

  36. D. Rowenhorst, A. Rollett, G. Rohrer, M. Groeber, M. Jackson, P. Konijnenberg, and M. Graef, Modell. Simul. Mater. Sci. Eng. 23, 083501 (2015)

    Article  Google Scholar 

  37. H. Ledbetter, Phys. Status Solidi A 85, 89 (1984)

    Article  Google Scholar 

  38. M. Miller and P. Dawson, J. Mech. Phys. Solids 45, 1781 (1997)

    Article  Google Scholar 

  39. C. Gerard, B. Bacroix, M. Bornert, G. Cailletaud, J. Crepin, and S. Leclercq, Comput. Mater. Sci. 45, 751 (2009)

    Article  Google Scholar 

  40. C. Gerard, G. Cailletaud, and B. Bacroix, Int. J. Plast. 42, 194 (2013)

    Article  Google Scholar 

  41. V. Kouznetsova, W. Brekelmans, and F. Baaijens, Comput. Mech. 27, 37 (2001)

    Article  Google Scholar 

  42. M. Geers, V. Kouznetsova, and W. Brekelmans, J. Comput. Appl. Math. 234, 2175 (2010)

    Article  Google Scholar 

  43. D. Cioranescu and P. Donato, An Introduction to Homogenization (Oxford University Press, New York, 1999)

    MATH  Google Scholar 

  44. T. Tran, V. Monchiet, and G. Bonnet, Int. J. Solids Struct. 49, 783 (2012)

    Article  Google Scholar 

  45. V. Jikov, S. Kozlov, and O. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, New York, 1994)

    Book  Google Scholar 

  46. A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures (American Mathematical Society, Providence, 2011)

    MATH  Google Scholar 

  47. X. Yin, W. Chen, A. To, C. McVeigh, and W. Liu, Comput. Methods Appl. Mech. Eng. 197, 3516 (2008)

    Article  MathSciNet  Google Scholar 

  48. W. Drugan and J. Willis, J. Mech. Phys. Solids 44, 497 (1996)

    Article  MathSciNet  Google Scholar 

  49. A. Gusev, J. Mech. Phys. Solids 45, 1449 (1997)

    Article  Google Scholar 

  50. M. Ostoja-Starzewski, Int. J. Solids Struct. 35, 2429 (1998)

    Article  Google Scholar 

  51. Z. Ren and Q. Zheng, J. Mech. Phys. Solids 50, 881 (2002)

    Article  Google Scholar 

  52. Z. Ren and Q. Zheng, Mech. Mater. 36, 1217 (2004)

    Article  Google Scholar 

  53. C. Huet, J. Mech. Phys. Solids 38, 813 (1990)

    Article  MathSciNet  Google Scholar 

  54. S. Nemat-Nasser, Mech. Mater. 31, 493 (1999)

    Article  Google Scholar 

  55. G. Johnson and W. Cook, A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. 7th International Symposium on Ballistics, (The Hague, 1983), pp. 541–547.

  56. D. Bammann, M. Chiesa, and G. Johnson, A state variable model for temperature and strain rate dependent metals, in Constitutive Laws: Experiments and Numerical Implementation, ed. A. Rajendran and R. Batra (The Hague, 1995), pp. 84

  57. B. Scherzinger, Sandia National Laboratories, Albuquerque, NM, unpublished research (2015)

  58. H. Dumontet, ESAIM Math. Modell. Numer. Anal. 20, 265 (1987)

    MathSciNet  Google Scholar 

  59. J. Auriault and G. Bonnet, Int. J. Eng. Sci. 25, 307 (1987)

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank Ben Reedlunn for suggesting that we explore the use of the Hosford yield criteria. Also, we would like to thank Bill Scherzinger for the implementation of the Hosford plasticity algorithm within the Sierra finite-element software and discussions of its use. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Bishop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishop, J.E., Emery, J.M., Battaile, C.C. et al. Direct Numerical Simulations in Solid Mechanics for Quantifying the Macroscale Effects of Microstructure and Material Model-Form Error. JOM 68, 1427–1445 (2016). https://doi.org/10.1007/s11837-016-1857-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1857-6

Keywords

Navigation