Skip to main content
Log in

Challenges of Engineering Grain Boundaries in Boron-Based Armor Ceramics

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Boron-based ceramics are appealing for lightweight applications in both vehicle and personnel protection, stemming from their combination of high hardness, high elastic modulus, and low density as compared to other ceramics and metal alloys. However, the performance of these ceramics and ceramic composites is lacking because of their inherent low fracture toughness and reduced strength under high-velocity threats. The objective of the present article is to briefly discuss both the challenges and the state of the art in experimental and computational approaches for engineering grain boundaries in boron-based armor ceramics, focusing mainly on boron carbide (B4C) and boron suboxide (B6O). The experimental challenges involve processing these ceramics at full density while trying to promote microstructure features such as intergranular films to improve toughness during shock. Many of the computational challenges for boron-based ceramics stem from their complex crystal structure which has hitherto complicated the exploration of grain boundaries and interfaces. However, bridging the gaps between experimental and computational studies at multiple scales to engineer grain boundaries in these boron-based ceramics may hold the key to maturing these material systems for lightweight defense applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.F. Horstemeyer, Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering Design with Science (Hoboken, NJ: Wiley, 2012).

    Book  Google Scholar 

  2. T.M. Pollock, J.E. Allison, D.G. Backman, M. Gersh, E.A. Holm, R. LeSar, M. Long, A.C. Powell IV, J.J. Schirra, D. Demania Whitis, and C. Woodward, ISBN-10: 0-309-09317-1, Washington, DC, 2008. http://www.nap.edu/catalog/12199/integrated-computational-materials-engineering-a-transformational-discipline-for-improved-competitiveness.

  3. M. Chen, J.W. McCauley, and K.J. Hemker, Science 299, 1563 (2003).

    Article  Google Scholar 

  4. M.W. Chen, J.W. McCauley, J.C. LaSalvla, and K.J. Hemker, J. Am. Ceram. Soc. 88, 1935 (2005).

    Article  Google Scholar 

  5. K. Madhav Reddy, J.J. Guo, Y. Shinoda, T. Fujita, A. Hirata, J.P. Singh, J.W. McCauley, and M.W. Chen, Nat. Commun. 3, 1052 (2012).

    Article  Google Scholar 

  6. K. Madhav Reddy, A. Hirata, P. Liu, T. Fujita, T. Goto, and M.W. Chen, Scr. Mater. 76, 9 (2014).

    Article  Google Scholar 

  7. A.A. Shul’zhenko, D.A. Stratiichuk, G.S. Oleinik, N.N. Belyavina, and V.Y. Markiv, Powder Metall. Met. Ceram. 44, 75 (2005).

    Article  Google Scholar 

  8. H.F. Rizzo, W.C. Simmons, and H.O. Bielstein, J. Electrochem. Soc. 109, 1079 (1962).

    Article  Google Scholar 

  9. L. Vargas-Gonzalez, R.F. Speyer, and J. Campbell, Int. J. Appl. Ceram. Technol. 7, 643 (2010).

    Article  Google Scholar 

  10. D.W. He, Y.S. Zhao, L. Daemen, J. Qian, T.D. Shen, and T.W. Zerda, Appl. Phys. Lett. 81, 643 (2002).

    Article  Google Scholar 

  11. K.J. McClellan, F. Chu, J.M. Roper, and I. Shindo, J. Mater. Sci. 36, 3403 (2001).

    Article  Google Scholar 

  12. S.P. Dodd, G.A. Saunders, and B. James, J. Mater. Sci. 37, 2731 (2002).

    Article  Google Scholar 

  13. R. Ruh, G.R. Atkins, and D.R. Petrak, J. Am. Ceram. Soc. 58, 357 (1975).

    Article  Google Scholar 

  14. T.J. Vogler, J. Appl. Phys. 95, 4173 (2004).

    Article  Google Scholar 

  15. Y. Zhang, T. Mashimo, Y. Uemura, M. Uchino, M. Kodama, K. Shibata, K. Fukuoka, M. Kikuchi, T. Kobayashi, and T. Sekine, J. Appl. Phys. 100, 113536 (2006).

    Article  Google Scholar 

  16. T. Sano, M. Shaeffer, L. Vargas-Gonzalez, and J. Pomerantz, Dynamic Behavior of Materials (Berlin: Springer, 2013).

    Google Scholar 

  17. D. Ge, V. Domnich, T. Juliano, E.A. Stach, and Y. Gogotsi, Acta Mater. 52, 3921 (2004).

    Article  Google Scholar 

  18. R. McCuiston, J. LaSalvia, J. McCauley, and W. Mayo, Advances in Ceramic Armor IV: Ceramic Engineering and Science Proceedings, Volume 29, Issue 6 (Wiley, New Yok, 2009), pp. 153.

  19. M. Chen, J.W. McCauley, and K.J. Hemker, Science 299, 1563 (2003).

    Article  Google Scholar 

  20. V. Domnich, S. Reynaud, R.A. Haber, and M. Chhowalla, J. Am. Ceram. Soc. 94, 3605 (2011).

    Article  Google Scholar 

  21. H. Latifi, A. Moradkhani, H. Baharvandi, and J. Martikainen, Mater. Des. 62, 392 (2014).

    Article  Google Scholar 

  22. P.F. Becher, E.Y. Sun, K.P. Plucknett, K.B. Alexander, C.-H. Hsueh, H.-T. Lin, S.B. Waters, C.G. Westmoreland, E.-S. Kang, K. Hirao, and M.E. Brito, J. Am. Ceram. Soc. 81, 2821 (2005).

    Article  Google Scholar 

  23. P. Šajgalik, J. Dusza, and M.J. Hoffmann, J. Am. Ceram. Soc. 78, 2619 (1995).

    Article  Google Scholar 

  24. A. Subramaniam, C.T. Koch, R.M. Cannon, and M. Ruhle, Mat. Sci. Eng. A Struct. 422, 3 (2006).

    Article  Google Scholar 

  25. E.Y. Sun, P.F. Becher, K.P. Plucknett, C.-H. Hsueh, K.B. Alexander, S.B. Waters, K. Hirao, and M.E. Brito, J. Am. Ceram. Soc. 81, 2831 (2005).

    Article  Google Scholar 

  26. H.J. Kleebe, S. Lauterbach, T.C. Shabalala, M. Herrmann, and I. Sigalas, J. Am. Ceram. Soc. 91, 569 (2008).

    Article  Google Scholar 

  27. T. Letsoalo and J.E. Lowther, J. Superhard Mater. 33, 19 (2011).

    Article  Google Scholar 

  28. R. Angers and M. Beauvy, Ceram. Int. 10, 49 (1984).

    Article  Google Scholar 

  29. F. Thévenot, J. Eur. Ceram. Soc. 6, 205 (1990).

    Article  Google Scholar 

  30. M. Bouchacourt and F. Thevenot, J. Less Common Metals 82, 219 (1981).

    Article  Google Scholar 

  31. S.L. Dole, S. Prochazka, and R.H. Doremus, J. Am. Ceram. Soc. 72, 958 (1989).

    Article  Google Scholar 

  32. X. Li, D. Jiang, J. Zhang, Q. Lin, Z. Chen, and Z. Huang, Ceram. Int. 40, 4359 (2014).

    Article  Google Scholar 

  33. S. Hayun, V. Paris, M.P. Dariel, N. Frage, and E. Zaretzky, J. Eur. Ceram. Soc. 29, 3395 (2009).

    Article  Google Scholar 

  34. S. Hayun, S. Kalabukhov, V. Ezersky, M.P. Dariel, and N. Frage, Ceram. Int. 36, 451 (2010).

    Article  Google Scholar 

  35. B.M. Moshtaghioun, F.L. Cumbrera-Hernández, D. Gómez-García, S. de Bernardi-Martín, A. Domínguez-Rodríguez, A. Monshi, and M.H. Abbasi, J. Eur. Ceram. Soc. 33, 361 (2013).

    Article  Google Scholar 

  36. T.K. Roy, C. Subramanian, and A.K. Suri, Ceram. Int. 32, 227 (2006).

    Article  Google Scholar 

  37. R.F. Speyer and H. Lee, J. Mater. Sci. 39, 6017 (2004).

    Article  Google Scholar 

  38. M. Mashhadi, E. Taheri-Nassaj, and V.M. Sglavo, Ceram. Int. 36, 151 (2010).

    Article  Google Scholar 

  39. M. Mashhadi, E. Taheri-Nassaj, V.M. Sglavo, H. Sarpoolaky, and N. Ehsani, Ceram. Int. 35, 831 (2009).

    Article  Google Scholar 

  40. H. Miyazaki, Y. Zhou, H. Hyuga, Y.-I. Yoshizawa, and T. Kumazawa, J. Eur. Ceram. Soc. 30, 999 (2010).

    Article  Google Scholar 

  41. L.S. Sigl, J. Eur. Ceram. Soc. 18, 1521 (1998).

    Article  Google Scholar 

  42. V. Skorokhod Jr, M.D. Vlajic, and V.D. Krstic, J. Mater. Sci. Lett. 15, 1337 (1996).

    Article  Google Scholar 

  43. K.A. Schwetz and W. Grellner, J. Less Common Metals 82, 37 (1981).

    Article  Google Scholar 

  44. J.E. Zorzi, C.A. Perottoni, and J.A.H. da Jornada, Mater. Lett. 59, 2932 (2005).

    Article  Google Scholar 

  45. L. Levin, N. Frage, and M.P. Dariel, Metall. Mater. Trans. A 30, 3201 (1999).

    Article  Google Scholar 

  46. H.-W. Kim, Y.-H. Koh, and H.-E. Kim, J. Am. Ceram. Soc. 83, 2863 (2000).

    Article  Google Scholar 

  47. G.I. Kalandadze, S.O. Shalamberidze, and A.B. Peikrishvili, J. Solid State Chem. 154, 194 (2000).

    Article  Google Scholar 

  48. R. Telle, AIP Conf. Proc. 231, 553 (1991).

    Article  Google Scholar 

  49. J. Sun, C. Liu, and R. Wang, Mater. Sci. Eng. A 519, 27 (2009).

    Article  Google Scholar 

  50. K.J. Kim, K.-Y. Lim, Y.-W. Kim, M.-J. Lee, and W.-S. Seo, J. Eur. Ceram. Soc. 34, 1695 (2014).

    Article  Google Scholar 

  51. C.H. Lee and C.H. Kim, J. Mater. Sci. 27, 6335 (1992).

    Article  Google Scholar 

  52. B.R. Klotz, K.C. Cho, and R.J. Dowding, Mater. Manuf. Processes 19, 631 (2004).

    Article  Google Scholar 

  53. K.Y. Xie, M.F. Toksoy, K. Kuwelkar, B. Zhang, J.A. Krogstad, R.A. Haber, and K.J. Hemker, J. Am. Ceram. Soc. 97, 3710 (2014).

    Article  Google Scholar 

  54. A. Andrews, M. Herrmann, T.C. Shabalala, and I. Sigalas, J. Eur. Ceram. Soc. 28, 1613 (2008).

    Article  Google Scholar 

  55. O. T. Johnson, E. N. Ogunmuyiwa, I. Sigalas, and M. Herrmann, Proceedings of the World Congress on Engineering, 2013.

  56. R.O. Ritchie, Nat. Mater. 10, 817 (2011).

    Article  Google Scholar 

  57. R. Brydson, S.-C. Chen, F.L. Riley, S.J. Milne, X. Pan, and M. Rühle, J. Am. Ceram. Soc. 81, 369 (1998).

    Article  Google Scholar 

  58. D. Chen, M.E. Sixta, X.F. Zhang, L.C. De Jonghe, and R.O. Ritchie, Acta Mater. 48, 4599 (2000).

    Article  Google Scholar 

  59. A. Ziegler, J.C. Idrobo, M.K. Cinibulk, C. Kisielowski, N.D. Browning, and R.O. Ritchie, Science 306, 1768 (2004).

    Article  Google Scholar 

  60. H.-J. Kleebe, M.K. Cinibulk, R.M. Cannon, and M. Rüble, J. Am. Ceram. Soc. 76, 1969 (1993).

    Article  Google Scholar 

  61. T. Watanabe and S. Tsurekawa, Mater. Sci. Eng. A 387–389, 447 (2004).

    Article  Google Scholar 

  62. S. Dillon, M. Harmer, and J. Luo, JOM 61, 38 (2009).

    Article  Google Scholar 

  63. C.-M. Wang, X. Pan, M.J. Hoffmann, R.M. Cannon, and M. Riihle, J. Am. Ceram. Soc. 79, 788 (1996).

    Article  Google Scholar 

  64. L.S. Sigl and H.-J. Kleebe, J. Am. Ceram. Soc. 76, 773 (1993).

    Article  Google Scholar 

  65. G.H. Kwei and B. Morosin, J. Phys. Chem. Us 100, 8031 (1996).

    Article  Google Scholar 

  66. B. Morosin, G.H. Kwei, A.C. Lawson, T.L. Aselage, and D. Emin, J. Alloy. Compd. 226, 121 (1995).

    Article  Google Scholar 

  67. M. Kobayashi, I. Higashi, C. Brodhag, and F. Thevenot, J. Mater. Sci. 28, 2129 (1993).

    Article  Google Scholar 

  68. D. Gosset and M. Colin, J. Nucl. Mater. 183, 161 (1991).

    Article  Google Scholar 

  69. U. Kuhlmann, H. Werheit, and K.A. Schwetz, J. Alloy. Compd. 189, 249 (1992).

    Article  Google Scholar 

  70. R. Lazzari, N. Vast, J.M. Besson, S. Baroni, and A. Dal Corso, Phys. Rev. Lett. 83, 3230 (1999).

    Article  Google Scholar 

  71. J.E. Saal, S. Shang, and Z.-K. Liu, Appl. Phys. Lett. 91, 231915 (2007).

    Article  Google Scholar 

  72. D. Smith, A.S. Dworkin, and E.R. Van Artsdalen, J. Am. Chem. Soc. 77, 2654 (1955).

    Article  Google Scholar 

  73. D.E. Taylor, J.W. McCauley, and T.W. Wright, J. Phys. Condens. Matter. Inst. Phys. J. 24, 505402 (2012).

    Article  Google Scholar 

  74. D. E. Taylor, T. W. Wright, and J. W. McCauley, MRU.S. Army Research Laboratory, May 2011.

  75. K.Y. Xie, Q. An, M.F. Toksoy, J.W. McCauley, R.A. Haber, W.A. Goddard, and K.J. Hemker, Phys. Rev. Lett. 115, 175501 (2015).

    Article  Google Scholar 

  76. T. Fujita, P.F. Guan, K.M. Reddy, A. Hirata, J.J. Guo, and M.W. Chen, Appl. Phys. Lett. 104, 021907 (2014).

    Article  Google Scholar 

  77. M. Menon and D. Srivastava, Chem. Phys. Lett. 307, 407 (1999).

    Article  Google Scholar 

  78. W.H. Moon and H.J. Hwang, Nanotechnology 15, 431 (2004).

    Article  Google Scholar 

  79. W.H. Moon and H.J. Hwang, Phys. Lett. A 320, 446 (2004).

    Article  Google Scholar 

  80. W. H. Moon, M. S. Son, J. H. Lee, and H. J. Hwang, Phys. Status Solidi (b) 241, 1783 (2004).

  81. A.C.T. van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard, J. Phys. Chem. A 105, 9396 (2001).

    Article  Google Scholar 

  82. W. Sekkal, B. Bouhafs, H. Aourag, and M. Certier, J Phys-Condens Mat 10, 4975 (1998).

    Article  Google Scholar 

  83. K. Albe and W. Moller, Comput. Mater. Sci. 10, 111 (1998).

    Article  Google Scholar 

  84. K. Matsunaga, C. Fisher, and H. Matsubara, Jpn. J. Appl. Phys. 2, L48 (2000).

    Article  Google Scholar 

  85. S.S. Han, J.K. Kang, H.M. Lee, A.C.T. van Duin, and W.A. Goddard, J. Chem. Phys. 123, 114703 (2005).

    Article  Google Scholar 

  86. A.K. Rappe and W.A. Goddard, J. Phys. Chem. 95, 3358 (1991).

    Article  Google Scholar 

  87. W.J. Mortier, S.K. Ghosh, and S. Shankar, J. Am. Chem. Soc. 108, 4315 (1986).

    Article  Google Scholar 

  88. S.S. Han, J.K. Kang, H.M. Lee, A.C.T. van Duin, and W.A. Goddard, J. Chem. Phys. 123, 114704 (2005).

    Article  Google Scholar 

  89. Q. An and W. A. Goddard, Phys. Rev. Lett., 115, (2015).

  90. J.K. Maranas, Y.Z. Chen, D.K. Stillinger, and F.H. Stillinger, J. Chem. Phys. 115, 6578 (2001).

    Article  Google Scholar 

  91. A.M. Rajendran and D.J. Grove, Int. J. Impact Eng 18, 611 (1996).

    Article  Google Scholar 

  92. J.D. Walker, Int. J. Impact Eng 29, 747 (2003).

    Article  Google Scholar 

  93. T.J. Holmquist and G.R. Johnson, Int. J. Impact Eng 31, 113 (2005).

    Article  Google Scholar 

  94. T.J. Holmquist and G.R. Johnson, Int. J. Impact Eng 35, 742 (2008).

    Article  Google Scholar 

  95. J.M.J.D. Toonder, J.A.W.V. Dommelen, and F.P.T. Baaijens, Model. Simul. Mater. Sci. Eng. 7, 909 (1999).

  96. J.D. Clayton, Philos. Mag. 92, 2860 (2012).

    Article  Google Scholar 

  97. J.D. Clayton, Mech. Res. Commun. 49, 57 (2013).

    Article  Google Scholar 

  98. J.D. Clayton and A.L. Tonge, Int. J. Solids Struct. 64–65, 191 (2015).

    Article  Google Scholar 

  99. H. Wang and M. Li, J. Phys. Condens. Matter. Inst. Phys. J. 21, 455401 (2009).

    Article  Google Scholar 

  100. G. Fanchini, J.W. McCauley, and M. Chhowalla, Phys. Rev. Lett. 97, 035502 (2006).

    Article  Google Scholar 

  101. J.D. Clayton, AIMS Mater. Sci. 1, 143 (2014).

    Article  Google Scholar 

Download references

Acknowledgement

SPC and EHR acknowledge support by appointments to Postdoctoral Fellowships at the U.S. Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn P. Coleman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coleman, S.P., Hernandez-Rivera, E., Behler, K.D. et al. Challenges of Engineering Grain Boundaries in Boron-Based Armor Ceramics. JOM 68, 1605–1615 (2016). https://doi.org/10.1007/s11837-016-1856-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1856-7

Keywords

Navigation