Skip to main content
Log in

Magnesium Powder Injection Molding (MIM) of Orthopedic Implants for Biomedical Applications

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Metal injection molding (MIM) has a high potential for the economic near-net-shape mass production of small-sized and complex-shaped parts. The motivation for launching Mg into the MIM processing chain for manufacturing biodegradable medical implants is related to its compatibility with human bone and its degradation in a non-toxic matter. It has been recognized that the load-bearing capacity of MIM Mg parts is superior to that of biodegradable polymeric components. However, the choice of appropriate polymeric binder components and alloying elements enabling defect-free injection molding and sintering is a major challenge for the use of MIM Mg parts. This study considered the full processing chain for MIM of Mg–Ca alloys to achieve ultimate tensile strength of up to 141 MPa with tensile yield strength of 73 MPa, elongation at fracture Af of 7% and a Young’s modulus of 38 GPa. To achieve these mechanical properties, a thermal debinding study was performed to determine optimal furnace and atmosphere conditions, sintering temperature, heating rates, sintering time and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.E. Friedrich and B.L. Mordike, Magnesium Technology (Berlin: Springer, 2006).

    Google Scholar 

  2. K.U. Kainer, eds., Magnesium (Weinheim: Wiley-VCH, 2010).

    Google Scholar 

  3. H. Dieringa, N. Hort, and K.U. Kainer, eds., Proceedings of the Fifth International Light Metals Technology Conference 2011 (Trans Tech Publications Ltd, Material Science Forum, 2011), p 690.

  4. Z. Li, X. Gu, S. Lou, and Y. Zheng, Biomaterials 29, 1329 (2008).

    Article  Google Scholar 

  5. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).

    Article  Google Scholar 

  6. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, and H. Windhagen, Biomaterials 26, 3557 (2005).

    Article  Google Scholar 

  7. F. Witte, J. Reifenrath, P.P. Müller, H.-A. Crostack, J. Nellesen, F.W. Bach, D. Bormann, and M. Rudert, Materialwiss. Werkstofftech. 37, 504 (2006).

    Article  Google Scholar 

  8. F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Störmer, C. Blawert, W. Dietzel, and N. Hort, Biomaterials 28, 2163 (2007).

    Article  Google Scholar 

  9. F. Witte, H. Ulrich, M. Rudert, and E. Willbold, J. Biomed. Mater. Res. 81A, 748 (2007).

    Article  Google Scholar 

  10. F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kraese, A. Pisch, F. Beckmann, and H. Windhagen, Biomaterials 27, 1013 (2006).

    Article  Google Scholar 

  11. F. Witte, H. Ulrich, C. Palm, and E. Willbold, J. Biomed. Mater. Res. 81A, 757 (2007).

    Article  Google Scholar 

  12. G. Poumarat and P. Squire, Biomaterials 14, 337 (1993).

    Article  Google Scholar 

  13. A.R. Cunha, B Umbelino, M.L. Correia, and M.F. Neves, Int. J. Hypertens., Hindawi Publishing Co. (2012) Art.-ID 754250.

  14. B. Ratner, A. Hoffmann, F. Schoen, and J. Lemons, eds., Biomaterials Science: An Introduction to Materials in Medicine (San Diego: Elsevier Academic Press, 2004).

    Google Scholar 

  15. C. Janning, E. Willbold, C. Vogt, J. Nellesen, A. Meyer-Lindenberg, H. Windbergen, F. Thorey, and F. Witte, Acta Biomater. 6, 1861 (2010).

    Article  Google Scholar 

  16. J. Capek and D. Vojtech, Mater. Sci. Eng. 33C, 564 (2013).

    Article  Google Scholar 

  17. K. Bobe, E. Willbild, I. Morgenthal, O. Andersen, T. Studnitzky, W. Tillmann, C. Vogt, K. Vano, and F. Witte, Acta Biomater. 9, 8611 (2013).

    Article  Google Scholar 

  18. M. Wolff, M. Dahms, and T. Ebel, Adv. Eng. Mater. 12, 829 (2010).

    Article  Google Scholar 

  19. M. Wolff, T. Guelck, and T. Ebel, Euro PM 2009: Proceeding, 2, 417 (2009).

  20. M. Wolff and N. Hort, Powder Inject. Mould. Int, 2, 63 (2008).

    Google Scholar 

  21. M. Wolff, C. Bischof, M. Dahms, T. Ebel, and T. Klassen, 9th International Conference on Magnesium and their Applications (Vancouver, Canada, July 8–12, 2012) p 102.

  22. M. Wolff, J.G. Schaper, M. Dahms, T. Ebel, K.U. Kainer, and T. Klassen, Powder Metall. 57, 331 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wolff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolff, M., Schaper, J.G., Suckert, M.R. et al. Magnesium Powder Injection Molding (MIM) of Orthopedic Implants for Biomedical Applications. JOM 68, 1191–1197 (2016). https://doi.org/10.1007/s11837-016-1837-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1837-x

Keywords

Navigation