Skip to main content
Log in

Effects of Some Additives on Copper Losses to Matte Smelting Slag

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Copper is lost to slag between 0.7 and 2.3 wt.% during the industrial copper matte smelting stage. In the present study, the aim was to minimize these losses in the slag phase by adding some fluxing agents like CaO, B2O3 and calcium borate (namely colemanite—2CaO·3B2O3·5H2O). Eti Copper Inc. (EBI) flash furnace smelter slag containing 0.88 wt.%Cu and matte with the addition each of CaO, B2O3 and colemanite up to 10 wt.% of the total charge were melted in a silica crucible placed in a vertical tube furnace at 1250°C under nitrogen atmosphere for 2 h. The experimental results of matte–slag–flux mixtures showed that the addition of all additives up to 4 wt.% led to a gradual decrease of the copper content in the final slags. Beyond this value, the copper losses to slag increased markedly with the increasing CaO and B2O3 additions. On the other hand, the colemanite addition of more than 4 wt.% did not substantially affect the copper losses to slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.C. Yannopoulas, Can. Metall. Q. 10, 291 (1971).

    Article  Google Scholar 

  2. J.M. Toguri, N.J. Themelis, and P.H. Jennigs, Can. Metall. Q. 3, 199 (1964).

    Article  Google Scholar 

  3. M.E. Schlesinger, M.J. King, A.W. Davenport, and K.C. Sole, Extractive Metallurgy of Copper, 5th edn. (Oxford: Elsevier, 2011), pp.191–203.

    Book  Google Scholar 

  4. H. Jalkanen, J. Vehvilainen, and J. Poijarvi, Scand. J. Metall. 32, 65 (2003).

    Article  Google Scholar 

  5. R. Sridhar, J.M. Toguri, and S. Simeonov, Metall. Mater. Trans. B 28, 191 (1997).

    Article  Google Scholar 

  6. F. Sehnalek, I. Imris, in Adv. Extr. Metall. Refin., IMM, London, 1972, pp. 39–62.

  7. A. Geveci, in 5.th Sci. Congr., Turkish Scientific And Research Council, Ankara, pp. 289–305, (1975).

  8. A. Yazawa, Can. Metall. Q. 13, 443 (1974).

    Article  Google Scholar 

  9. W.J. Elliot, B.J., See, J.B., Rankin, Trans. Inst. Min. Met. C, 87, 204 (1978).

    Google Scholar 

  10. M. Timucin, N. Sevinc, Y. A. Topkaya, H. Eric, Use of Colemanite in the Production of Iron and Steel, Ankara, (1986).

  11. E. Ozmen, L., Inger, in Sohn Int. Symp., TMS, San Diego, pp. 299–306, (2006).

  12. Y. Lu, G. Zhang, and M. Jiang, Adv. Mater. Res. 233, 805 (2011).

    Article  Google Scholar 

  13. K.H. Obst, J. Stradtman, J. S. Afr. Inst. Min. Metall., 158 (1972).

  14. M. Sek, A. Aso, and Y. Okubo, Kawasaki Steel Tech. Rep. 15, 16 (1986).

    Google Scholar 

  15. Y. Pontikes, L. Kriskova, X. Wang, S. Arnout, E. Nagels, Ö. Cizer, T. Van, in 2nd Int. Slag Valoris. Symp. (Ed.: O.C. P.T. Jones, Y. Ponitkes, J. Elssen), Katholieke Universtiteit Leuven, Leuven, pp. 313–326 (2011).

  16. A. Ruşen, A. Geveci, Y.A. Topkaya, and B. Derin, Can. Metall. Q. 51, 157 (2012).

    Article  Google Scholar 

  17. FactSage, 2011.

  18. B. Gorai and R.K. Jana, Resour. Conserv. Recycl. 39, 299 (2003).

    Article  Google Scholar 

  19. Y.A. Topkaya, ATB Met. 30, 23 (1990).

    Google Scholar 

  20. I. Mihailova and D. Mehandjiev, J. Univ. Chem. Technol. Metall. 45, 317 (2010).

    Google Scholar 

  21. R. Rüffler and J. Davalos, Hyperfine Interact. 111, 299 (1998).

    Article  Google Scholar 

  22. P.C. Hayes, M.E. Schlesinger, H.U. Steil, A. Siegmunt, in Proc. Lead-Zinc 2010, Canadian Institute of Mining, Metallurgy and Petroleum), Westmount, pp. 345–413 (2010).

  23. K.J. Rao, Structural Chemistry of Glasses (Oxford: Elsevier, 2002).

    Google Scholar 

  24. V. Werner, Glass Chemistry (Berlin: Springer, 1994).

    Google Scholar 

  25. S. Ren, J. Zhang, L. Wu, W. Liu, Y. Bai, X. Xing, B. Su, and D. Kong, ISIJ Int. 52, 984 (2012).

    Article  Google Scholar 

  26. H. Aykut, Influence of B 2 O 3 Additions on the Microstructure of Mica Based GlassCeramics, METU, M.Sc. Thesis (2005).

  27. H. Wang, G. Li, Q. Dai, Y. Lei, Y. Zhao, B. Li, G. Shi, and Z. Ren, ISIJ Int. 46, 637 (2006).

    Article  Google Scholar 

  28. K. Mills, The Estimation of Slag Properties, Johannesburg (2011).

  29. R. Altman, Trans. Inst. Min. Met. C 87 (1978).

  30. J.B. See, L.L. Oden, P.E. Sanker, and E.A. Johnson, Copper Losses and the Distribution of Impurity Elements between Matte and Silica-saturated Iron Silicate Slags at 1250 °C (Pittsburgh, PA: U.S. Dept. of the Interior, Bureau of Mines, 1982).

  31. F.J. Elliott and M. Mounier, Can. Metall. Q. 21, 415 (1982).

    Article  Google Scholar 

  32. J. Li, K. Huang, and X. Chen, Acta Metal. Sin. B 2, 386 (1989).

    Google Scholar 

  33. R.H. Eric, J. S. Afr. Inst. Min. Metall. 499 (2004).

  34. A.C. Ducret and W.J. Rankin, Scand. J. Metall. 31, 59 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Boron Research Institute with project no. BOREN-2007-C0141 and METU. The support given by EBİ by supplying FFS-FFM samples and performing the wet chemical analysis is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Rusen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusen, A., Geveci, A., Topkaya, Y.A. et al. Effects of Some Additives on Copper Losses to Matte Smelting Slag. JOM 68, 2323–2331 (2016). https://doi.org/10.1007/s11837-016-1825-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1825-1

Keywords

Navigation