Skip to main content

Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

Abstract

Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing–structure–properties–performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).

    Article  Google Scholar 

  2. 2.

    D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev. 57, 133 (2012).

    Article  Google Scholar 

  3. 3.

    G.N. Levy, R. Schindel, and J.P. Kruth, CIRP Ann. 52, 589 (2003).

    Article  Google Scholar 

  4. 4.

    D.T. Pham and R.S. Gault, Int. J. Mach. Tools Manuf. 38, 1257 (1998).

    Article  Google Scholar 

  5. 5.

    J. Pegna, Autom. Constr. 5, 427 (1997).

    Article  Google Scholar 

  6. 6.

    J.P. Kruth, M.C. Leu, and T. Nakagawa, Progress in Additive Manufacturing and Rapid Prototyping (Bern: Hallwag Publishers, 1998).

    Google Scholar 

  7. 7.

    C.B. Williams, F. Mistree, and D.W. Rosen, J. Mech. Des. 133, 11 (2011).

    Article  Google Scholar 

  8. 8.

    L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.-P. Kruth, Acta Mater. 58, 3303 (2010).

    Article  Google Scholar 

  9. 9.

    E. Yasa and J.P. Kruth, Proc. Eng. 19, 389 (2011).

    Article  Google Scholar 

  10. 10.

    W. Di, Y. Yongqiang, S. Xubin, and C. Yonghua, Int. J. Adv. Manuf. Technol. 58, 1189 (2012).

    Article  Google Scholar 

  11. 11.

    S.D. Washko and G. Aggen, ASM Handbook: Wrought Stainless Steels, Properties and Selection: Irons, Steels, and High-Performance Alloys (Ohio: ASM International, 1990).

    Google Scholar 

  12. 12.

    H. Hermawan, D. Ramdan, and J.R. Djuansjah, Metals for Biomedical Applications (INTECH Open Access Publisher, 2011).

  13. 13.

    J.C. Wataha, N.L. O’Dell, B.B. Singh, M. Ghazi, G.M. Whitford, and P.E. Lockwood, J. Biomed. Mater. Res. 58, 537 (2001).

    Article  Google Scholar 

  14. 14.

    C.R. Clayton, G.P. Halada, and J.R. Kearns, Mater. Sci. Eng. A 198, 135 (1995).

    Article  Google Scholar 

  15. 15.

    G.P. Halada and C.R. Clayton, J. Vac. Sci. Technol. A 11, 2342 (1993).

    Article  Google Scholar 

  16. 16.

    A. Di Schino and J.M. Kenny, J. Mater. Sci. Lett. 21, 1631 (2002).

    Article  Google Scholar 

  17. 17.

    Y. Li, F. Wang, and G. Liu, Corrosion 60, 891 (2004).

    Article  Google Scholar 

  18. 18.

    Y.-W. Hao, B. Deng, C. Zhong, Y.-M. Jiang, and J. Li, J. Iron. Steel Res. Int. 16, 68 (2009).

    Article  Google Scholar 

  19. 19.

    A.J. Detor and C.A. Schuh, J. Mater. Res. 22, 15 (2007).

    Article  Google Scholar 

  20. 20.

    J. Edington, Practical Electron Microscopy in Materials Science (New York: Van Nostrand Reinhold Company, 1976).

    Google Scholar 

  21. 21.

    T. Ungár, Scr. Mater. 51, 777 (2004).

    Article  Google Scholar 

  22. 22.

    M. Kerber, M. Zehetbauer, E. Schafler, F. Spieckermann, S. Bernstorff, and T. Ungar, JOM 63, 61 (2011).

    Article  Google Scholar 

  23. 23.

    Z. Zhang, F. Zhou, and E.J. Lavernia, Metall. Mater. Trans. A 34A, 6 (2003).

    Google Scholar 

  24. 24.

    Y.S. Hedberg, B. Qian, Z. Shen, S. Virtanen, and I. Odnevall Wallinder, Dent. Mater. 30, 525 (2014).

    Article  Google Scholar 

  25. 25.

    X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu, and Z. Shen, J. Alloys Compd. 631, 153 (2015).

    Article  Google Scholar 

  26. 26.

    J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, J. Mater. Process. Technol. 149, 616 (2004).

    Article  Google Scholar 

  27. 27.

    J.P. Kruth, M.C. Leu, and T. Nakagawa, CIRP Ann. 47, 525 (1998).

    Article  Google Scholar 

  28. 28.

    M. Marya, V. Singh, S. Marya, and J. Hascoet, Metall. Mater. Trans. B 46, 1654 (2015).

    Article  Google Scholar 

  29. 29.

    C.T. Kwok, S.L. Fong, F.T. Cheng, and H.C. Man, J. Mater. Process. Technol. 176, 168 (2006).

    Article  Google Scholar 

  30. 30.

    C. Carboni, P. Peyre, G. Béranger, and C. Lemaitre, J. Mater. Sci. 37, 3715 (2002).

    Article  Google Scholar 

  31. 31.

    C. Kamath, B. El-dasher, G. Gallegos, W. King, and A. Sisto, Int. J. Adv. Manuf. Technol. 74, 65 (2014).

    Article  Google Scholar 

  32. 32.

    N. Ahmed, M.S. Bakare, D.G. McCartney, and K.T. Voisey, Surf. Coat. Technol. 204, 2294 (2010).

    Article  Google Scholar 

  33. 33.

    E. Otero, A. Pardo, M.V. Utrilla, E. Saenz, and F.J. Perez, Mater. Charact. 35, 145 (1995).

    Article  Google Scholar 

  34. 34.

    Z. Wang, Y. Cong, T. Zhang, Y. Shao, and G. Meng, Int. J. Electrochem. Sci. 6, 5521 (2011).

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the National Center for Defense Manufacturing and Machining (NCDMM)/America Makes and the SUNY Network of Excellence for Materials and Advanced Manufacturing. J.T. and O.D. acknowledge support for this work from the National Science Foundation under Award No. CMMI-1401662. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. J.T and O.D would also like to thank Kim Kisslinger at the CFN for his assistance in preparing the FIB TEM samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jason R. Trelewicz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trelewicz, J.R., Halada, G.P., Donaldson, O.K. et al. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel. JOM 68, 850–859 (2016). https://doi.org/10.1007/s11837-016-1822-4

Download citation