, Volume 68, Issue 3, pp 735–746 | Cite as

Fatigue Performance of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Analysis of Current Fatigue Data and Metallurgical Approaches for Improving Fatigue Strength

  • Fei Cao
  • K. S. Ravi Chandran


A comprehensive assessment of fatigue performance of powder metallurgy (PM) Ti-6Al-4V alloy, manufactured using various powder-based processing approaches to-date, is performed in this work. The focus is on PM processes that use either blended element (BE) or pre-alloyed (PA) powder as feedstock. Porosity and the microstructure condition have been found to be the two most dominant material variables that control the fatigue strength. The evaluation reveals that the fatigue performance of PM Ti-6Al-4V, in the as-sintered state, is far lower than that in the wrought condition. This is largely caused by residual porosity, even if it is present in small amounts, or, by the coarse lamellar colony microstructure. The fatigue strength is significantly improved by the closure of pores, and it approaches the levels of wrought Ti-6Al-4V alloys, after hot-isostatic-pressing (HIPing). Further thermo-mechanical and heat treatments lead to additional increases in fatigue strength–in one case, a high fatigue strength level, exceeding that of the mill-annealed condition, was achieved. The work identifies the powder, process and microstructure improvements that are necessary for achieving high fatigue strength in powder metallurgical Ti-6Al-4V alloys in order for them to effectively compete with wrought forms. The present findings, gathered from the traditional titanium powder metallurgy, are also directly applicable to additively manufactured titanium, because of the similarities in pores, defects, and microstructures between the two manufacturing processes.



The authors gratefully acknowledge the financial support from the US Department of Energy, Innovative Manufacturing Initiative (DEEE0005761), through the Advanced Manufacturing Office and the Office of Energy Efficiency and Renewable Energy.


  1. 1.
    R. Haynes, Powder Metall. 13, 465 (1970).CrossRefGoogle Scholar
  2. 2.
    B. Zhang, D.R. Poirier, and W. Chen, Metall. Mater. Trans. A 30, 2659 (1999).CrossRefGoogle Scholar
  3. 3.
    Q.G. Wang, D. Apelian, and D.A. Lados, J. Light Metals 1, 73 (2001).CrossRefGoogle Scholar
  4. 4.
    C. Lin, C. Ju, and J.H. Lin, Biomaterials 26, 2899 (2005).CrossRefGoogle Scholar
  5. 5.
    F. Cao, P. Kumar, M. Koopman, C. Lin, Z.Z. Fang, and K.S. Ravi Chandran, Mater. Sci. Eng. A 630, 139 (2015).CrossRefGoogle Scholar
  6. 6.
    O.M. Ivasishin, D.G. Savvakin, F. Froes, V.C. Mokson, and Bondareva, Powder Metall. Met. Ceram. 41, 382 (2002).CrossRefGoogle Scholar
  7. 7.
    Z.Z. Fang, P. Sun, and H. Wang, Adv. Eng. Mater. 14, 383 (2012).CrossRefGoogle Scholar
  8. 8.
    G. Wirth, K.J. Grundhoff, and W. Smarsly, SAMPE Q. 17, 34 (1986).Google Scholar
  9. 9.
    Y.T. Lee, K.J. Grundhoff, and G. Wirth, Zeitschrift für Metallkunde 78, 49 (1987).Google Scholar
  10. 10.
    H. Wang and Z. Zak, Fang, and P. Sun. Int. J Powder Metall. 46, 45 (2010).Google Scholar
  11. 11.
    D. Eylon, R.G. Vogt, and F.H. Froes, Modern Dev. Powder Metall. 16, 563 (1985).Google Scholar
  12. 12.
    K.S. Ravi Chandran, Department of Metallurgical Engineering, The University of Utah, Salt Lake City, UT, Unpublished research, 2015.Google Scholar
  13. 13.
    T. Fujita, A. Ogawa, C. Ouchi, and H. Tahima, Mater. Sci. Eng. A 213, 148 (1996).CrossRefGoogle Scholar
  14. 14.
    P.J. Anderson, V.M. Svoyatytsky, F.H. Froes, Y. Mahajan, and D. Eylon, Modern Dev. Powder Metall. 13, 537 (1981).Google Scholar
  15. 15.
    F.H. Froes, D. Eylon, and Y. Mahajan, Modern Dev. Powder Metall. 13, 523 (1981).Google Scholar
  16. 16.
    M. Hagiwara, Y. Kaieda, and Y. Kawabe, Paper presented at the 114th ISIJ Meeting, Tetsu-to-Hagane, 71, S1518 (1987) (in Japanese)Google Scholar
  17. 17.
    Y. Yan, G.L. Nash, and P. Nash, Int. J. Fatigue 55, 81 (2013).CrossRefGoogle Scholar
  18. 18.
    F. Cao, K.S. Ravi Chandran, P. Kumar, P. Sun, M. Koopman, Z.Zak Fang, Department of Metallurgical Engineering, the University of Utah, Salt Lake City, UT, unpublished research, 2015.Google Scholar
  19. 19.
    J.P. Herteman, D. Eylon, and F.H. Froes, Proceeding of the Fifth International Conference on Titanium (Munich, Germany, 10–14 September 1984).Google Scholar
  20. 20.
    M. Hagiwara, Y. Kaieda, Y. Kawabe, and S. Miura, ISIJ Int. 31, 922 (1991).CrossRefGoogle Scholar
  21. 21.
    V.S. Moxson, P. Sjoblom, and M.J. Trzcinski, Adv. Powder Metall. 6, 125 (1992).Google Scholar
  22. 22.
    W.R. Kerr, Metall. Mater. Trans. A 16, 1077 (1985).CrossRefGoogle Scholar
  23. 23.
    R. Chait and T.S. Desisto, Metall. Mater. Trans. A 8, 1017 (1977).CrossRefGoogle Scholar
  24. 24.
    K.S. Chan, Int. J. Fatigue 32, 1428 (2010).CrossRefGoogle Scholar
  25. 25.
    X. Liu, C. Sun, and Y. Hong, Mater. Sci. Eng. A 622, 228 (2015).CrossRefGoogle Scholar
  26. 26.
    I. Weiss, D. Eylon, M.W. Toaz, and F.H. Froes, Metall. Trans. A 17, 549 (1986).CrossRefGoogle Scholar
  27. 27.
    S.T. Williams, H. Zhao, F. Leonard, F. Derguti, I. Todd, and P.B. Prangnell, Mater. Charact. 102, 47 (2015).CrossRefGoogle Scholar
  28. 28.
    G. Kasperovich and J. Hausmann, J. Mater. Proc. Tech. 220, 202 (2015).CrossRefGoogle Scholar
  29. 29.
    Q. Liu, J. Elambasseril, S. Sun, M. Leary, M. Brandt, and P.K. Sharp, Adv. Mater. Res. 891–892, 1519 (2014).CrossRefGoogle Scholar
  30. 30.
    S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier, Int. J. Fatigue 48, 300 (2013).CrossRefGoogle Scholar
  31. 31.
    A. Mohammadhosseini, D. Fraser, S.H. Masood, and M. Jahedi, Mater. Res. Innov. 17, 106 (2013).CrossRefGoogle Scholar
  32. 32.
    B. Baufeld, E. Brandl, and O. Biest, J. Mater. Proc. Tech. 211, 1146 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Department of Metallurgical EngineeringThe University of UtahSalt Lake CityUSA

Personalised recommendations