Skip to main content
Log in

Evaluation of PGE Liberation and Chromium Isolation in a Solid UG2 Chromitite Concentrates at Moderate Temperatures Using ICP-OES

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Complete sample digestion is a prerequisite in achieving accurate and reproducible results in wet chemical analysis as well as effective element recovery in hydrometallurgical beneficiation processes. Inductively coupled plasma-optical emission spectroscopy was used to evaluate the efficiency of (NH4)2HPO4/(NH4)H2PO4, Na2HPO4/NaH2PO4·H2O (800°C), NH4F·HF flux (250°C), microwave dissolution using HCl and aqua regia acids (240°C) to dissolve and liberate the platinum group metals (PGE) in a Upper Group 2 (UG2) chromitite concentrate sample. Complete digestion of the UG2 chromitite ore was achieved using Na2HPO4/NaH2PO4·H2O and (NH4)2HPO4/(NH4)H2PO4 flux mixtures and average PGE (Ru, Os and Pt) yields of 1.90 g/kg (Ru), 0.88 g/kg (Os), 2.52 g/kg (Pt) were obtained using Sc as internal standard. Fusion with NH4F·HF yielded 0.85 g/kg (Ru), 0.72 g/kg (Os) and 0.95 g/kg (Pt) whilst microwave dissolution using HCl and aqua regia yielded an average of 0.77 g/kg (Ru), 0.08 g/kg (Os) and 0.35 g/kg (Pt). Sodium phosphate flux, however, introduced Na+ ions as easily ionised elements, which affected the emission intensities to yield slightly inflated PGE (Ru, Os and Pt) yields. The use of ammonium phosphate and sodium phosphate at 800°C (after the selective removal of Na+ ions) proved to better the fluxes and produced higher and consistent PGE yields. The use of ammonium phosphate flux was also shown to facilitate the isolation of a green chromium precipitate with a 98.9% purity, which may assist in a hydrometallurgical beneficiation process of the UG2 chromitite concentrate ore and may also have important implications for the ferro-chrome industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. K.S. Liddell, L.B. McRae, and R.C. Dunne, Mintek Rev. 4, 33 (1986).

    Google Scholar 

  2. C.H. McLaren, Met. Miner. Process. 19 (1978).

  3. J.A. Kinnaird, F.J. Kruger, P.A.M. Nex, and R.G. Cawthorn, Trans. Inst. Min. Metall. 111, B23 (2002).

    Google Scholar 

  4. R.T. Jones, S. Afr. J. Sci. 95, 525 (1999).

    Google Scholar 

  5. Q.I. Wesseldijk, M.A. Reuter, D.J. Bradshaw, and P.J. Harris, Miner. Eng. 12, 1177 (1999).

    Article  Google Scholar 

  6. S.C. Newman, Trans. Inst. Min. Metall. 82, A52 (1973).

    Google Scholar 

  7. J. Rademan and J. Wiese, S. Afr. Inst. Min. Metall. 1003 (2012).

  8. C. Rule, J. S. Afr. Inst. Min. Metall. 71 (2010).

  9. L. Maharaj, B.K. Loveday, and J. Pocock, S. Afr. J. Chem. Eng. 16, 1 (2011).

    Google Scholar 

  10. R.R. Barefoot and J.C. Van Loon, Talanta 49, 1 (1999).

    Article  Google Scholar 

  11. T.T. Chiweshe, Quantification of iridium and other platinum group metals in the presence of naturally occurring contaminants in geological ore, PhD thesis, University of the Free State, Bloemfontein, 2014.

  12. T.T. Chiweshe, W. Purcell, and J.A. Venter, Bull. Chem. Soc. Jpn. 88, 8 (2015).

    Article  Google Scholar 

  13. W. Purcell, A. Roodt, S.S. Basson, and J.G. Leipoldt, Trans. Met. Chem. 16, 60 (1991).

    Article  Google Scholar 

  14. http://www.simarsrl.com/Cataloghi/BAS%20Catalogo%20Outside%202014.pdf. Accessed 14 Jan 2016.

  15. P.S. Parreira, C.R. Appoloni, R.M.L. Vieira, R.B. Scorzelli, L. LeCorre, and M.F. Guerra, ArcheoSciences 33, 313 (2009).

    Article  Google Scholar 

  16. C.J. Penberthy, E.J. Oosthuyzen, and R.K.W. Merkle, Miner. Petrol. 68, 213 (2000).

    Article  Google Scholar 

  17. L.J. Corrans, S. Afr. Inst. Min. Metall. 629 (1982).

  18. J.A. Kinnaird, F.J. Kruger, P.A.M. Nex, and R.G. Cawthorn, Trans. Inst. Min. Metall. B 111, 23 (2002).

    Google Scholar 

  19. L.A. Cramer, J. Basson, and L.R. Nelson, J. S. Afr. Inst. Min. Metall. 517 (2004).

  20. R.G. Cawthorn, Platin. Met. Rev. 54, 205 (2010).

    Article  Google Scholar 

  21. J.L. Todoli, L. Gras, V. Hernandis, and J. Mora, J. Anal. At. Spectrom. 17, 142 (2002).

    Article  Google Scholar 

  22. Y. Morishige and A. Kimura, SEI Tech. Rev. 66, 106 (2008).

    Google Scholar 

  23. P. Gaines, B. Brolin, and I.C.P. Operations, ICP operations, spectral interferences, types, avoidance and correction (2004).

  24. H. Sereshti, N. Eskandarpour, S. Samadi, and G. Aliakbarzadeh, Int. J. Environ. Res. 8, 1075 (2014).

    Google Scholar 

  25. M.M. Cheatham, W.F. Sangrey, and W.M. White, Spectrochim. Acta Part B 48, 487 (1993).

    Article  Google Scholar 

  26. A.R. Barnes and A.F. Newall, J. S. Afr. Inst. Min. Metall. 77 (2006).

  27. T.T. Chiweshe, W. Purcell, and J. Venter, S. Afr. J. Chem. 66, 7 (2012).

    Google Scholar 

  28. W. Zhang, Z. Hu, Y. Liu, H. Chen, S. Gao, and R.M. Gaschning, Anal. Chem. 84, 10686 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the NRF, Research Fund of the University of the Free State and Inkaba yeAfrika for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor T. Chiweshe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiweshe, T.T., Purcell, W. & Venter, J.A. Evaluation of PGE Liberation and Chromium Isolation in a Solid UG2 Chromitite Concentrates at Moderate Temperatures Using ICP-OES. JOM 68, 1691–1700 (2016). https://doi.org/10.1007/s11837-016-1811-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1811-7

Keywords

Navigation