Skip to main content
Log in

Spark Plasma Sintering of Load-Bearing Iron–Carbon Nanotube-Tricalcium Phosphate CerMets for Orthopaedic Applications

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recently, ceramic–metallic composite materials (CerMets) have been investigated for orthopaedic applications with promising results. This first generation of bio-CerMets combine the bioactivity of hydroxyapatite with the mechanical stability of titanium to fabricate bioactive, tough and biomechanically more biocompatible osteosynthetic devices. Nonetheless, these first CerMets are not biodegradable materials and a second surgery is required to remove the implant after bone healing. The present work aims to develop the next generation bio-CerMets, which are potential biodegradable materials. The process to produce the new biodegradable CerMet consisted of mixing powder of soluble and osteoconductive alpha tricalcium phosphate with biocompatible and biodegradable iron with consolidation through spark plasma sintering (SPS). The microstructure, composition and mechanical strength of the new CerMet were studied by metallography, x-ray diffraction and diametral tensile strength tests, respectively. The results show that SPS produces CerMet with higher mechanical performance (120 MPa) than the ceramic component alone (29 MPa) and similar mechanical strength to the pure metallic component (129 MPa). Nonetheless, although a short sintering time (10 min) was used, partial transformation of the alpha tricalcium phosphate into its allotropic and slightly less soluble beta phase was observed. Cell adhesion tests show that osteoblasts are able to attach to the CerMet surface, presenting spread morphology regardless of the component of the material with which they are in contact. However, the degradation process restricted to the small volume of the cell culture well quickly reduces the osteoblast viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Ettmayer, H. Kolaska, W. Lengauer, and K. Dreyer, Int. J. Refract. Met. Hard Mater. 13, 343 (1995).

    Article  Google Scholar 

  2. A. Rajabi, M.J. Ghazali, and A.R. Daud, Mater. Des. 67, 95 (2015).

    Article  Google Scholar 

  3. A. Arifin, A.B. Sulong, N. Muhamad, J. Syarif, and M.I. Ramli, Mater. Des. 55, 165 (2014).

    Article  Google Scholar 

  4. C. Chu, J. Zhu, Z. Yin, and S. Wang, J. Mater. Sci. Eng. A 271, 95 (1999).

    Article  Google Scholar 

  5. C. Chu, X. Xue, J. Zhu, and Z. Yin, J. Mater. Sci. Eng. A 429, 18 (2006).

    Article  Google Scholar 

  6. C. Chu, X. Xue, J. Zhu, and Z. Yin, J. Mater. Sci. Mater. Med. 15, 665 (2004).

    Article  Google Scholar 

  7. C. Ning and Y. Zhou, Acta Biomater. 4, 1944 (2008).

    Article  Google Scholar 

  8. A. Kumar, K. Biswas, and B. Basu, Acta Mater. 61, 5198 (2013).

    Article  Google Scholar 

  9. J. Karrholm and R. Razaznejad, Clin Orthop Relat R 466, 380 (2008).

    Article  Google Scholar 

  10. C.Q. Ning and Y. Zhou, Biomaterials 23, 2909 (2002).

    Article  Google Scholar 

  11. P.P. Schmittenbecher, Eur. J. Trauma Emerg. Surg. 39, 345 (2013).

    Article  Google Scholar 

  12. R.Z. LeGeros and J.P. LeGeros, Key Eng. Mater. 240–242, 3 (2003).

    Article  Google Scholar 

  13. J.C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Amsterdam: Elsevier, 1994), pp. 1–62.

    Google Scholar 

  14. J.H. Shepherd and S.M. Best, JOM 63, 83 (2011).

    Article  Google Scholar 

  15. Y.F. Zheng, X.N. Gu, and F. Witte, Mater. Sci. Eng. R 77, 1 (2014).

    Article  Google Scholar 

  16. A. Francis, Y. Yang, S. Virtanen, and A.R. Boccaccini, J. Mater. Sci. Mater. Med. 26, 138 (2015).

    Article  Google Scholar 

  17. N.T. Kirkland and N. Birbilis, Magnesium Biomaterials: Design, Testing, and Best Practice, 1st ed. (Switzerland: Springer, 2014), pp. 73–94.

    Google Scholar 

  18. S. Jafari, S.E. Harandi, and R.K.S. Raman, JOM 67, 1143 (2015).

    Article  Google Scholar 

  19. R. Orrú, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Mater. Sci. Eng. R 63, 127 (2009).

    Article  Google Scholar 

  20. L. Wang, J. Zhang, and W. Jiang, Int. J. Refract. Met. Hard Mater. 39, 103 (2013).

    Article  Google Scholar 

  21. M. Mulukutla, A. Singh, and S.P. Harimkar, JOM 62, 65 (2010).

    Article  Google Scholar 

  22. J. Cheng and Y.F. Zheng, J. Biomed. Mater. Res. Part B 101, 485 (2013).

    Article  Google Scholar 

  23. ASTM E407-07. Standard Practice for Microetching Metals and Alloys, (ASTM International, West Conshohocken, PA, 2010).

  24. R.G. Carrodeguas and S. De Aza, Acta Biomater. 7, 3536 (2011).

    Article  Google Scholar 

  25. L.A. Santos, L.C. Oliveira, E.C.S. Rigo, R.G. Carrodeguas, A.O. Boschi, and A.C.F. Arruda, Bone 25, 99S (1999).

    Article  Google Scholar 

  26. E.B. Montufar, Y. Maazouz, and M.P. Ginebra, Acta Biomater. 9, 6188 (2013).

    Article  Google Scholar 

  27. M.P. Ginebra, E. Fernandez, F.C.M. Driessens, and J.A. Planell, J. Am. Ceram. Soc. 82, 2808 (1999).

    Article  Google Scholar 

  28. ASTM F1088-04a. Standard Specification for Beta-Tricalcium Phosphate for Surgical Implantation, (ASTM International, West Conshohocken, PA, 2010).

  29. M.F. Ulum, A. Arafat, D. Noviana, A.H. Yusop, A.K. Nasution, M.R. Abdul Kadir, and H. Hermawan, Mater. Sci. Eng. C 36, 336 (2014).

    Article  Google Scholar 

  30. A. Reindl, R. Borowsky, S.B. Hein, J. Geis-Gerstorfer, P. Imgrund, and F. Petzoldt, J. Mater. Sci. 49, 8234 (2014).

    Article  Google Scholar 

  31. M. Bohner, Injury 31, D37 (2000).

    Article  Google Scholar 

  32. R. Berenbaum and I. Brodie, Br. J. Appl. Phys. 10, 281 (1959).

    Article  Google Scholar 

  33. A.T. Procopio, A. Zavaliangos, and J.C. Cunningham, J. Mater. Sci. 38, 3629 (2003).

    Article  Google Scholar 

  34. C. Chu, X. Xue, J. Zhu, and Z. Yin, J. Mater. Sci. Mater. Med. 17, 245 (2006).

    Article  Google Scholar 

  35. E. Bresciani, T. Barata, T.C. Fagundes, A. Adachi, M. Martins, and M.F.L. Navarro, J. Appl. Oral Sci. 12, 344 (2004).

    Article  Google Scholar 

  36. S.R. Bakshi, D. Lahiri, and A. Argawal, Int. Mater. Rev. 55, 41 (2010).

    Article  Google Scholar 

  37. H. Zhou, J. Wei, X. Wu, J. Shi, C. Liu, J. Jia, C. Dai, and Q.I. Gan, J. Mater. Sci. Mater. Med. 21, 2175 (2010).

    Article  Google Scholar 

  38. J.P. Marie, Bone 46, 571 (2010).

    Article  Google Scholar 

  39. N.J. Hallab, C. Vermes, C. Messina, K.A. Roebuck, T.T. Glant, and J.J. Jacobs, J. Biomed. Mater. Res. 60, 420 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided in the frame of the Project “CEITEC—Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) by European Regional Development Fund. Part of the work was carried out with the support of core facilities of research infrastructure CEITEC Nano of CEITEC-Brno University of Technology. SDT acknowledges to Conacyt-SNI (P. 1777000). Special thanks to Dr. M. Rampichová from Czech Technical University in Prague for supplying the cells for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar B. Montufar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montufar, E.B., Horynová, M., Casas-Luna, M. et al. Spark Plasma Sintering of Load-Bearing Iron–Carbon Nanotube-Tricalcium Phosphate CerMets for Orthopaedic Applications. JOM 68, 1134–1142 (2016). https://doi.org/10.1007/s11837-015-1806-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1806-9

Keywords

Navigation