, Volume 68, Issue 3, pp 899–907 | Cite as

RETRACTED ARTICLE: Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

  • Yong Liu
  • Shenghang Xu
  • Xin Wang
  • Kaiyang Li
  • Bin Liu
  • Hong Wu
  • Huiping Tang


Ultra-high strength and ductile powder metallurgy (PM) binary Ti-20at.%Ta alloy has been fabricated via sintering from elemental Ti and Ta powders and subsequent hot swaging and annealing. The microstructural evolution and mechanical properties in each stage were evaluated. Results show that inhomogeneous microstructures with Ti-rich and Ta-rich areas formed in the as-sintered Ti-Ta alloys due to limited diffusion of Ta. In addition, Kirkendall porosity was observed as a result of the insufficient diffusion of Ta. Annealing at 1000°C for up to 24 h failed to eliminate the pores. Hot swaging eliminated the residual sintering porosity and created a lamellar microstructure, consisting of aligned Ta-enriched and Ti-enriched phases. The hot-swaged and annealed PM Ti-20Ta alloy achieved an ultimate tensile strength of 1600 MPa and tensile elongation of more than 25%, due to its unique lamellar microstructure including the high toughness of Ta-enriched phases, the formation of α phase in the β matrix and the refined lamellae.



The authors gratefully acknowledge the financial support from the National High Technology Research and Development Program of China (863 Program) (No. 2013AA031103), Shenzhen Municipal Science and Technology Plan (CXY201107010187A), and the Project of Innovation-driven Plan in Central South University (2015CX004).


  1. 1.
    X. Xu and P. Nash, Mater. Sci. Eng. A 607, 409 (2014).CrossRefGoogle Scholar
  2. 2.
    E. Delvat, D.M. Gordin, T. Gloriant, J.L. Duval, and M.D. Nagel, J. Mech. Behav. Biomed. Mater. 1, 345 (2008).CrossRefGoogle Scholar
  3. 3.
    F. Xie, X. He, S. Cao, M. Mei, and X. Qu, Electrochim. Acta 105, 121 (2013).CrossRefGoogle Scholar
  4. 4.
    V.A. Baheti, S. Roy, R. Ravi, and A. Paul, Intermetallics 33, 87 (2013).CrossRefGoogle Scholar
  5. 5.
    O. Minho, G. Vakanas, N. Moelans, M. Kajihara, and W. Zhang, Microelectron. Eng. 120, 133 (2014).CrossRefGoogle Scholar
  6. 6.
    S. Zhou, Y. Fan, Y. He, and N. Xu, J. Membr. Sci. 325, 546 (2008).CrossRefGoogle Scholar
  7. 7.
    H. Gao, Y. He, P. Shen, J. Zou, N. Xu, Y. Jiang, B. Huang, and C.T. Liu, Intermetallics 17, 1041 (2009).CrossRefGoogle Scholar
  8. 8.
    H.X. Dong, Y.H. He, Y. Jiang, L. Wu, J. Zou, N.P. Xu, B.Y. Huang, and C.T. Liu, Mater. Sci. Eng. A 528, 4849 (2011).CrossRefGoogle Scholar
  9. 9.
    H.S. Park, K.L. Park, and S.K. Hwang, Mater. Sci. Eng. A 50, 329 (2002).Google Scholar
  10. 10.
    P.D. Edwards and M. Ramulu, J. Mater. Process. Technol. 218, 107 (2015).CrossRefGoogle Scholar
  11. 11.
    W.F. Ho, C.P. Ju, and C. Lin, Biomaterials 20, 2115 (1999).CrossRefGoogle Scholar
  12. 12.
    D.R. Correa, F.B. Vicente, T.A. Donato, V.E. Arana-Chavez, M.A. Buzalaf, and C.R. Grandini, Mater. Sci. Eng. C Mater. Biol. Appl. 34, 354 (2014).CrossRefGoogle Scholar
  13. 13.
    H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, and S. Miyazaki, Acta Mater. 54, 2419 (2006).CrossRefGoogle Scholar
  14. 14.
    Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui, and H. Toda, Mater. Sci. Eng. A 398, 28 (2005).CrossRefGoogle Scholar
  15. 15.
    Y.L. Zhou, M. Niinomi, and T. Akahori, Mater. Sci. Eng. A 384, 92 (2004).CrossRefGoogle Scholar
  16. 16.
    Y.-L. Zhou and M. Niinomi, J. Alloys Compd. 466, 535 (2008).CrossRefGoogle Scholar
  17. 17.
    R.J. Talling, R.J. Dashwood, M. Jackson, and D. Dye, Acta Mater. 57, 1188 (2009).CrossRefGoogle Scholar
  18. 18.
    Y. Liu, K. Li, H. Wu, M. Song, W. Wang, N. Li, and H. Tang, J. Mech. Behav. Biomed. Mater. 51, 302 (2015).CrossRefGoogle Scholar
  19. 19.
    W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, Acta Mater. 85, 74 (2015).CrossRefGoogle Scholar
  20. 20.
    B. Zhang, X. Li, and D. Li, Calphad 43, 7 (2013).CrossRefGoogle Scholar
  21. 21.
    H. Wangyu, Q. Weihong, and Z. Bangwei, J. Hunan Univ. 26, 10 (1999).Google Scholar
  22. 22.
    M.-H. Cai, C.-Y. Lee, S. Kang, and Y.-K. Lee, Scr. Mater. 64, 1098 (2011).CrossRefGoogle Scholar
  23. 23.
    Y.L. Zhou, M. Niinomi, and T. Akahori, Mater. Sci. Eng. A 371, 283 (2004).CrossRefGoogle Scholar
  24. 24.
    W. Kochmann, M. Reibold, R. Goldberg, W. Hauffe, A.A. Levin, D.C. Meyer, T. Stephan, H. Müller, A. Belger, and P. Paufler, J. Alloys Compd. 372, L15 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Yong Liu
    • 1
  • Shenghang Xu
    • 1
  • Xin Wang
    • 1
  • Kaiyang Li
    • 1
  • Bin Liu
    • 1
  • Hong Wu
    • 1
  • Huiping Tang
    • 2
  1. 1.The State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China
  2. 2.The State Key Laboratory of Porous MetalsNorthwestern Institute of Nonferrous MetalsXi’anPeople’s Republic of China

Personalised recommendations