, Volume 68, Issue 3, pp 1000–1011 | Cite as

Characterization of an Aluminum Alloy Hemispherical Shell Fabricated via Direct Metal Laser Melting

  • T. G. Holesinger
  • J. S. Carpenter
  • T. J. Lienert
  • B. M. Patterson
  • P. A. Papin
  • H. Swenson
  • N. L. Cordes


The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependent microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 105 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.



Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. Electron microscopy was performed at the Los Alamos Electron Microscopy Laboratory. The authors gratefully acknowledge Steven J. Black for obtaining the hemispherical shell used in this study. The authors also acknowledge Bob Forsyth and Jim Foley for providing the macro-photographs of the hemispherical shell.


  1. 1.
    W. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).CrossRefGoogle Scholar
  2. 2.
    D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev. 57, 133 (2012).CrossRefGoogle Scholar
  3. 3.
    E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno, Prog. Mater. Sci. 74, 401 (2015).CrossRefGoogle Scholar
  4. 4.
    L. Thijs, K. Kempen, J.-P. Kruth, and J. Van Humbeeck, Acta Mater. 61, 1809 (2013).CrossRefGoogle Scholar
  5. 5.
    N. Read, W. Wang, K. Essa, and M.M. Attallah, Mater. Des. 65, 417 (2015).CrossRefGoogle Scholar
  6. 6.
    D. Buchbinder, W. Meiners, K. Wissenbach, and R. Poprawe, J. Laser Appl. 27, S29205 (2015).CrossRefGoogle Scholar
  7. 7.
    C. Yan, L. Hao, A. Hussein, P. Young, J. Huang, and W. Zhu, Mater. Sci. Eng. A 628, 238 (2015).CrossRefGoogle Scholar
  8. 8.
    E. Louvis, P. Fox, and C.J. Sutcliffe, J. Mater. Process. Technol. 211, 275 (2011).CrossRefGoogle Scholar
  9. 9.
    D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bültmann, Phys. Proced. 12, 271 (2011).CrossRefGoogle Scholar
  10. 10.
    R. Chou, J. Milligan, M. Paliwal, and M. Brochu, JOM 67, 590 (2015).CrossRefGoogle Scholar
  11. 11.
    W. Otten, R. Pajor, S. Schmidt, P.C. Baveye, R. Hague, and R.E. Falconer, Soil Biol. Biochem. 51, 53 (2012).CrossRefGoogle Scholar
  12. 12.
    E. Doney, L.A. Krumdick, J.M. Diener, C.A. Wathen, S.E. Chapman, B. Stamile, J.E. Scott, M.J. Ravosa, T. Van Avermaete, and W.M. Leevy, J. Vis. Exp. 73, 50250 (2013).Google Scholar
  13. 13.
    R.C. Wagner, J.R. Jungck, and D. Van Loo, Microsc Today 23, 18 (2015).CrossRefGoogle Scholar
  14. 14.
    A.G. Athanassiadis, P.J. La Rivière, E. Sidky, C. Pelizzari, X. Pan, and H.M. Jaeger, Rev. Sci. Instrum. 85, 083708 (2014).CrossRefGoogle Scholar
  15. 15.
    N.L. Cordes, K. Henderson, T. Stannard, J.J. Williams, X. Xiao, M.W.C. Robinson, T.A. Schaedler, N. Chawla, and B.M. Patterson, Microsc Today 23, 12 (2015).CrossRefGoogle Scholar
  16. 16.
    EOS, e-Manufacturing Solutions: Additive Manufacturing, Laser-Sintering and industrial 3D printing, 2015.Google Scholar
  17. 17.
    R.E. Spear and E.R. Gardner, Trans. Am. Foundrym. Soc. 71, 209 (1963).Google Scholar
  18. 18.
    E.J. Lavernia, J.D. Ayers, and T.S. Srivatsan, Int. Mater. Rev. 37, 1 (1992).CrossRefGoogle Scholar
  19. 19.
    C. Huang, G. Cao, and S. Kou, Sci. Technol. Weld. Join 9, 149 (2004).CrossRefGoogle Scholar
  20. 20.
    S. Kou, V. Firouzdor, and I.W. Haywood, Hot cracking in welds of aluminum and magnesium. Hot Cracking Phenomena in Welds III, Vol. III, ed. L.J.I.T. Bollinghaus and C.E. Cross (New York: Springer, 2011), p. 3.CrossRefGoogle Scholar
  21. 21.
    S. Kou, Welding Metallurgy (Hoboken: Wiley-InterScience, 2003).Google Scholar
  22. 22.
    W.J. Boettinger, Mater. Sci. Eng. 98, 123 (1988).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Materials Physics and Applications DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations