Skip to main content

Advertisement

Log in

Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

  • Published:
JOM Aims and scope Submit manuscript

An Erratum to this article was published on 11 February 2016

This article has been updated

Abstract

Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 11 February 2016

    An erratum to this article has been published.

References

  1. W.E. King, JOM 66, 2202 (2014).

    Article  Google Scholar 

  2. M. Mani, B. Lane, A. Donmez, S. Feng, S. Moylan and R. Fesperman, in Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes, NISTIR 8036 (National Institute of Standards and Technology, 2015), http://dx.doi.org/10.6028/NIST.IR.8036.

  3. P.C. Collins, C.V. Haden, I. Ghamarian, B.J. Hayes, T. Ales, G. Penso, V. Dixit, and G. Harlow, JOM 66, 1299 (2014).

    Article  Google Scholar 

  4. J. Gockel, J. Beuth, and K. Taminger, Addit. Manuf. 1–4, 119 (2014).

    Article  Google Scholar 

  5. N.E. Hodge, R.M. Ferencz, and J.M. Solberg, Comput. Mech. 54, 33 (2014).

    Article  MathSciNet  Google Scholar 

  6. C. Karmath, B. El-dasher, G.F. Gallegos, W.E. King, and A. Sisto, Int. J. Adv. Manuf. Technol. 74, 65 (2014).

    Article  Google Scholar 

  7. S.A. Khairallah and A. Anderson, J. Mater. Process. Technol. 214, 2627 (2014).

    Article  Google Scholar 

  8. R. Martukanitz, P. Michaleris, T. Palmer, T. DebRoy, Z.-K. Liu, R. Otis, T.-W. Heo, and L.-Q. Chen, Addit. Manuf. 1–4, 52 (2014).

    Article  Google Scholar 

  9. P. Michaleris, Finite Elem. Anal. Des. 86, 51 (2014).

    Article  Google Scholar 

  10. P. Prabhakar, W.J. Sames, R. Dehoff, and S.S. Babu, Addit. Manuf. 7, 83 (2014).

    Article  Google Scholar 

  11. T.I. Zohdi, Comput. Mech. 54, 171 (2014).

    Article  Google Scholar 

  12. D.M. Herlach, Mater. Sci. Eng. R 12, 177 (1994).

    Article  Google Scholar 

  13. J.E. Kline and J.P. Leonard, Appl. Phys. Lett. 86, 201902 (2005).

    Article  Google Scholar 

  14. R. Zhong, A. Kulovits, J.M.K. Wiezorek, and J.P. Leonard, Appl. Surf. Sci. 256, 105 (2009).

    Article  Google Scholar 

  15. A. Kulovits, R. Zhong, J.M.K. Wiezorek, and J.P. Leonard, Thin Solid Films 517, 3629 (2009).

    Article  Google Scholar 

  16. A. Kulovits, J.M.K. Wiezorek, T. LaGrange, B.W. Reed, and G.H. Campbell, Phil. Mag. Lett. 91, 287 (2011).

    Article  Google Scholar 

  17. J.T. McKeown, A.K. Kulovits, C. Liu, K. Zweiacker, B.W. Reed, T. LaGrange, J.M.K. Wiezorek, and G.H. Campbell, Acta Mater. 65, 56 (2014).

    Article  Google Scholar 

  18. J.L. Murray, Al–Cu Phase Diagram ASM Phase Diagrams Database, P. Villars, ed.-in-chief, H. Okamoto and K. Cenzual, section eds., http://www1.asminternational.org/AsmEnterprise/APD (Materials Park, OH: ASM International, 2006).

  19. J.L. Murray, Al–Si Phase Diagram, ASM Phase Diagrams Database, P. Villars, ed.-in-chief, H. Okamoto and K. Cenzual, section eds., http://www1.asminternational.org/AsmEnterprise/APD (Materials Park, OH: ASM International, 2006).

  20. C.A. Muojekwu, I.V. Samarasekera, and J.K. Brimacombe, Metall. Mater. Trans. B 26, 361 (1995).

    Article  Google Scholar 

  21. D.R. Poirier and E. McBride, Mater. Sci. Eng. A 224, 48 (1997).

    Article  Google Scholar 

  22. Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, and F.-Y. Xie, Mater. Sci. Eng. A 363, 140 (2003).

    Article  Google Scholar 

  23. O.L. Rocha, C.A. Siqueira, and A. Garcia, Metall. Mater. Trans. A 34, 995 (2003).

    Article  Google Scholar 

  24. M.D. Peres, C.A. Siqueira, and A. Garcia, J. Alloys Compd. 381, 168 (2004).

    Article  Google Scholar 

  25. B.L. Zink and F. Hellman, Solid State Commun. 129, 199 (2004).

    Article  Google Scholar 

  26. P.A.D. Jácome, M.C. Landim, A. Garci, A.F. Furtado, and I.L. Ferreira, Thermochim. Acta 523, 142 (2011).

    Article  Google Scholar 

  27. M. Zimmermann, M. Carrard, and W. Kurz, Acta Metall. 37, 3305 (1989).

    Article  Google Scholar 

  28. M. Zimmermann, A. Karma, and M. Carrard, Phys. Rev. B 42, 833 (1990).

    Article  Google Scholar 

  29. M. Zimmermann, M. Carrard, M. Gremaud, and W. Kurz, Mater. Sci. Eng. A 134, 1278 (1991).

    Article  Google Scholar 

  30. S.C. Gill, M. Zimmermann, and W. Kurz, Acta Metall. Mater. 40, 2895 (1992).

    Article  Google Scholar 

  31. S.C. Gill and W. Kurz, Acta Metall. Mater. 41, 3563 (1993).

    Article  Google Scholar 

  32. S.C. Gill and W. Kurz, Mater. Sci. Eng. A 173, 335 (1993).

    Article  Google Scholar 

  33. S.C. Gill and W. Kurz, Acta Metall. Mater. 43, 139 (1995).

    Google Scholar 

  34. A. Prasad, H. Henein, E. Maire, and C.-A. Gandin, Metall. Mater. Trans. A 37A, 249 (2006).

    Article  Google Scholar 

  35. H.A.H. Steen and A. Hellawell, Acta Metall. 20, 363 (1972).

    Article  Google Scholar 

  36. M. Pierantoni, M. Gremaud, P. Magnin, D. Stoll, and W. Kurz, Acta Metall. Mater. 40, 1637 (1992).

    Article  Google Scholar 

  37. Y. Birol, J. Mater. Sci. 31, 2139 (1996).

    Article  Google Scholar 

  38. F.A. Espana, V.K. Balla, and A. Bandyopadhyay, Phil. Mag. 91, 574 (2011).

    Article  Google Scholar 

  39. W.E. King, G.H. Campbell, A. Frank, B. Reed, J.F. Schmerge, B.J. Siwick, B.C. Stuart, and P.M. Weber, J. Appl. Phys. 97, 111101 (2005).

    Article  Google Scholar 

  40. J.S. Kim, T. LaGrange, B.W. Reed, M. Taheri, M.R. Armstrong, W.E. King, N.D. Browning, and G.H. Campbell, Science 321, 1472 (2008).

    Article  Google Scholar 

  41. T. LaGrange, G.H. Campbell, B.W. Reed, M. Taheri, J.B. Pesavento, J.S. Kim, and N.D. Browning, Ultramicroscopy 108, 1441 (2008).

    Article  Google Scholar 

  42. B.W. Reed, M.R. Armstrong, N.D. Browning, G.H. Campbell, J.E. Evans, T. LaGrange, and D.J. Masiel, Microsc. Microanal. 15, 272 (2009).

    Article  Google Scholar 

  43. T. LaGrange, B.W. Reed, M.K. Santala, J.T. McKeown, A. Kulovits, J.M.K. Wiezorek, L. Nikolova, F. Rosei, B.J. Siwick, and G.H. Campbell, Micron 43, 1108 (2012).

    Article  Google Scholar 

  44. G.H. Campbell, J.T. McKeown, and M.K. Santala, Appl. Phys. Rev. 1, 041101 (2014).

    Article  Google Scholar 

  45. T. LaGrange, B.W. Reed, and D.J. Masiel, MRS Bull. 40, 22 (2015).

    Article  Google Scholar 

  46. W.S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, MD, USA, http://imagej.nih.gov/ij/, 1997–2014.

  47. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, Nat. Methods 9, 671 (2012).

    Article  Google Scholar 

  48. S.R. Coriell and R.F. Sekerka, J. Cryst. Growth 61, 499 (1983).

    Article  Google Scholar 

  49. W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 35, 444 (1964).

    Article  Google Scholar 

  50. C. Liu, K. Zweiacker, J.T. McKeown, T. LaGrange, B.W. Reed, G.H. Campbell, and J.M.K. Wiezorek, Microsc. Microanal. 21, 811 (2015).

    Article  Google Scholar 

  51. M. Carrard, M. Gremaud, M. Zimmermann, and W. Kurz, Acta Metall. Mater. 40, 983 (1992).

    Article  Google Scholar 

  52. A. Karma and A. Sarkissian, Phys. Rev. Lett. 68, 2616 (1992).

    Article  Google Scholar 

  53. S.J. Pennycook, Ultramicroscopy 30, 58 (1989).

    Article  Google Scholar 

  54. J.C. Baker and J.W. Cahn, Acta Metall. 17, 575 (1969).

    Article  Google Scholar 

  55. P.M. Smith and M.J. Aziz, Acta Metall. Mater. 42, 3515 (1994).

    Article  Google Scholar 

  56. J.L. Murray, Int. Met. Rev. 30, 211 (1985).

    Article  Google Scholar 

  57. R.K. Singh, K. Chattopadhyay, S. Lele, and T.R. Anantharaman, J. Mater. Sci. 17, 1617 (1982).

    Article  Google Scholar 

  58. K. Zweiacker, In-Situ TEM Investigations of Rapid Solidification of Aluminum Copper Alloys, Ph.D. Thesis, University of Pittsburgh, 2015.

  59. K. Zweiacker, M.A. Gordillo, C. Liu, J.T. McKeown, T. LaGrange, B.W. Reed, G.H. Campbell, and J.M.K. Wiezorek, Microsc. Microanal. 21, 1465 (2015).

    Article  Google Scholar 

  60. W.J. Boettinger, D. Shechtman, R.J. Schaefer, and F.S. Biancaniello, Metall. Trans. A 15A, 55 (1984).

    Article  Google Scholar 

  61. W. Kurz and R. Trivedi, Acta Metall. Mater. 38, 1 (1990).

    Article  Google Scholar 

  62. M. Gremaud, M. Carrard, and W. Kurz, Acta Metall. Mater. 39, 1431 (1991).

    Article  Google Scholar 

  63. M.J. Aziz and T. Kaplan, Acta Metall. 36, 2335 (1988).

    Article  Google Scholar 

  64. M. Gupta and S. Ling, J. Alloys Compd. 287, 284 (1999).

    Article  Google Scholar 

  65. A.M. Prokhorov, V.I. Konov, I. Ursu and I.N. Mihailsecu, Laser Heating of Metals (Adam Hilger, IOP Publishing Ltd., Philadelphia, 1990), pp. 34–36.

  66. S.B. Boyden and Y. Zhang, J. Thermophys. Heat Tran. 20, 9 (2006).

    Article  Google Scholar 

  67. B.J. Siwick, J.R. Dwyer, R.E. Jordan, and R.J.D. Miller, Science 302, 1382 (2003).

    Article  Google Scholar 

  68. D.B. Williams and J.W. Edington, J. Mater. Sci. 12, 126 (1977).

    Article  Google Scholar 

  69. O.A. Atasoy, F. Yilmaz, and R. Elliott, J. Cryst. Growth 66, 137 (1984).

    Article  Google Scholar 

  70. M.H. Burden and J.D. Hunt, J. Cryst. Growth 22, 99 (1974).

    Article  Google Scholar 

  71. M.H. Burden and J.D. Hunt, J. Cryst. Growth 22, 109 (1974).

    Article  Google Scholar 

  72. M.H. Burden and J.D. Hunt, J. Cryst. Growth 22, 328 (1974).

    Article  Google Scholar 

  73. W.J. Boettinger, in Rapidly Solidified Amorphous and Crystalline Alloys, B.H. Kear, B.C. Giessen and M. Cohen, eds. (New York: Elsevier Science Publishing Co., Inc., 1982).

  74. W. Kurz and D.J. Fisher, Fundamentals of Solidification (Switzerland: Trans Tech SA, 1984).

    Google Scholar 

  75. J.A. Dantzig and M. Rappaz, Solidification (Lausanne: EPFL Press, 2009).

    Book  MATH  Google Scholar 

  76. W. Kurz and D.J. Fisher, Acta Metall. 29, 11 (1981).

    Article  Google Scholar 

  77. G.J. Merchant and S.H. Davis, Acta Metall. Mater. 38, 2683 (1990).

    Article  Google Scholar 

  78. M. Conti, Phys. Rev. E 58, 6166 (1998).

    Article  Google Scholar 

  79. M. Conti, Phys. Rev. E 58, 6101 (1998).

    Article  Google Scholar 

  80. J. Yota, J. Hander, and A.A. Saleh, J. Vac. Sci. Technol. A 18, 372 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy, by Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344. Activities and personnel at LLNL were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering under FWP SCW0974. Activities and personnel at the University of Pittsburgh received support from the National Science Foundation, Division of Materials Research, Metals & Metallic Nanostructures program through Grant No. DMR 1105757. Work at Los Alamos National Laboratory (LANL) was performed under the auspices of the U.S. Department of Energy by Los Alamos National Security, LLC, under Contract No. DE-AC52-06NA25396. Activities and personnel at LANL were supported by AJC’s Early Career Award from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering. DTEM sample preparation at LANL was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy, Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. McKeown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKeown, J.T., Zweiacker, K., Liu, C. et al. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing. JOM 68, 985–999 (2016). https://doi.org/10.1007/s11837-015-1793-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1793-x

Navigation