Abstract
Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.
Similar content being viewed by others
Change history
11 February 2016
An erratum to this article has been published.
References
W.E. King, JOM 66, 2202 (2014).
M. Mani, B. Lane, A. Donmez, S. Feng, S. Moylan and R. Fesperman, in Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes, NISTIR 8036 (National Institute of Standards and Technology, 2015), http://dx.doi.org/10.6028/NIST.IR.8036.
P.C. Collins, C.V. Haden, I. Ghamarian, B.J. Hayes, T. Ales, G. Penso, V. Dixit, and G. Harlow, JOM 66, 1299 (2014).
J. Gockel, J. Beuth, and K. Taminger, Addit. Manuf. 1–4, 119 (2014).
N.E. Hodge, R.M. Ferencz, and J.M. Solberg, Comput. Mech. 54, 33 (2014).
C. Karmath, B. El-dasher, G.F. Gallegos, W.E. King, and A. Sisto, Int. J. Adv. Manuf. Technol. 74, 65 (2014).
S.A. Khairallah and A. Anderson, J. Mater. Process. Technol. 214, 2627 (2014).
R. Martukanitz, P. Michaleris, T. Palmer, T. DebRoy, Z.-K. Liu, R. Otis, T.-W. Heo, and L.-Q. Chen, Addit. Manuf. 1–4, 52 (2014).
P. Michaleris, Finite Elem. Anal. Des. 86, 51 (2014).
P. Prabhakar, W.J. Sames, R. Dehoff, and S.S. Babu, Addit. Manuf. 7, 83 (2014).
T.I. Zohdi, Comput. Mech. 54, 171 (2014).
D.M. Herlach, Mater. Sci. Eng. R 12, 177 (1994).
J.E. Kline and J.P. Leonard, Appl. Phys. Lett. 86, 201902 (2005).
R. Zhong, A. Kulovits, J.M.K. Wiezorek, and J.P. Leonard, Appl. Surf. Sci. 256, 105 (2009).
A. Kulovits, R. Zhong, J.M.K. Wiezorek, and J.P. Leonard, Thin Solid Films 517, 3629 (2009).
A. Kulovits, J.M.K. Wiezorek, T. LaGrange, B.W. Reed, and G.H. Campbell, Phil. Mag. Lett. 91, 287 (2011).
J.T. McKeown, A.K. Kulovits, C. Liu, K. Zweiacker, B.W. Reed, T. LaGrange, J.M.K. Wiezorek, and G.H. Campbell, Acta Mater. 65, 56 (2014).
J.L. Murray, Al–Cu Phase Diagram ASM Phase Diagrams Database, P. Villars, ed.-in-chief, H. Okamoto and K. Cenzual, section eds., http://www1.asminternational.org/AsmEnterprise/APD (Materials Park, OH: ASM International, 2006).
J.L. Murray, Al–Si Phase Diagram, ASM Phase Diagrams Database, P. Villars, ed.-in-chief, H. Okamoto and K. Cenzual, section eds., http://www1.asminternational.org/AsmEnterprise/APD (Materials Park, OH: ASM International, 2006).
C.A. Muojekwu, I.V. Samarasekera, and J.K. Brimacombe, Metall. Mater. Trans. B 26, 361 (1995).
D.R. Poirier and E. McBride, Mater. Sci. Eng. A 224, 48 (1997).
Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, and F.-Y. Xie, Mater. Sci. Eng. A 363, 140 (2003).
O.L. Rocha, C.A. Siqueira, and A. Garcia, Metall. Mater. Trans. A 34, 995 (2003).
M.D. Peres, C.A. Siqueira, and A. Garcia, J. Alloys Compd. 381, 168 (2004).
B.L. Zink and F. Hellman, Solid State Commun. 129, 199 (2004).
P.A.D. Jácome, M.C. Landim, A. Garci, A.F. Furtado, and I.L. Ferreira, Thermochim. Acta 523, 142 (2011).
M. Zimmermann, M. Carrard, and W. Kurz, Acta Metall. 37, 3305 (1989).
M. Zimmermann, A. Karma, and M. Carrard, Phys. Rev. B 42, 833 (1990).
M. Zimmermann, M. Carrard, M. Gremaud, and W. Kurz, Mater. Sci. Eng. A 134, 1278 (1991).
S.C. Gill, M. Zimmermann, and W. Kurz, Acta Metall. Mater. 40, 2895 (1992).
S.C. Gill and W. Kurz, Acta Metall. Mater. 41, 3563 (1993).
S.C. Gill and W. Kurz, Mater. Sci. Eng. A 173, 335 (1993).
S.C. Gill and W. Kurz, Acta Metall. Mater. 43, 139 (1995).
A. Prasad, H. Henein, E. Maire, and C.-A. Gandin, Metall. Mater. Trans. A 37A, 249 (2006).
H.A.H. Steen and A. Hellawell, Acta Metall. 20, 363 (1972).
M. Pierantoni, M. Gremaud, P. Magnin, D. Stoll, and W. Kurz, Acta Metall. Mater. 40, 1637 (1992).
Y. Birol, J. Mater. Sci. 31, 2139 (1996).
F.A. Espana, V.K. Balla, and A. Bandyopadhyay, Phil. Mag. 91, 574 (2011).
W.E. King, G.H. Campbell, A. Frank, B. Reed, J.F. Schmerge, B.J. Siwick, B.C. Stuart, and P.M. Weber, J. Appl. Phys. 97, 111101 (2005).
J.S. Kim, T. LaGrange, B.W. Reed, M. Taheri, M.R. Armstrong, W.E. King, N.D. Browning, and G.H. Campbell, Science 321, 1472 (2008).
T. LaGrange, G.H. Campbell, B.W. Reed, M. Taheri, J.B. Pesavento, J.S. Kim, and N.D. Browning, Ultramicroscopy 108, 1441 (2008).
B.W. Reed, M.R. Armstrong, N.D. Browning, G.H. Campbell, J.E. Evans, T. LaGrange, and D.J. Masiel, Microsc. Microanal. 15, 272 (2009).
T. LaGrange, B.W. Reed, M.K. Santala, J.T. McKeown, A. Kulovits, J.M.K. Wiezorek, L. Nikolova, F. Rosei, B.J. Siwick, and G.H. Campbell, Micron 43, 1108 (2012).
G.H. Campbell, J.T. McKeown, and M.K. Santala, Appl. Phys. Rev. 1, 041101 (2014).
T. LaGrange, B.W. Reed, and D.J. Masiel, MRS Bull. 40, 22 (2015).
W.S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, MD, USA, http://imagej.nih.gov/ij/, 1997–2014.
C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, Nat. Methods 9, 671 (2012).
S.R. Coriell and R.F. Sekerka, J. Cryst. Growth 61, 499 (1983).
W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 35, 444 (1964).
C. Liu, K. Zweiacker, J.T. McKeown, T. LaGrange, B.W. Reed, G.H. Campbell, and J.M.K. Wiezorek, Microsc. Microanal. 21, 811 (2015).
M. Carrard, M. Gremaud, M. Zimmermann, and W. Kurz, Acta Metall. Mater. 40, 983 (1992).
A. Karma and A. Sarkissian, Phys. Rev. Lett. 68, 2616 (1992).
S.J. Pennycook, Ultramicroscopy 30, 58 (1989).
J.C. Baker and J.W. Cahn, Acta Metall. 17, 575 (1969).
P.M. Smith and M.J. Aziz, Acta Metall. Mater. 42, 3515 (1994).
J.L. Murray, Int. Met. Rev. 30, 211 (1985).
R.K. Singh, K. Chattopadhyay, S. Lele, and T.R. Anantharaman, J. Mater. Sci. 17, 1617 (1982).
K. Zweiacker, In-Situ TEM Investigations of Rapid Solidification of Aluminum Copper Alloys, Ph.D. Thesis, University of Pittsburgh, 2015.
K. Zweiacker, M.A. Gordillo, C. Liu, J.T. McKeown, T. LaGrange, B.W. Reed, G.H. Campbell, and J.M.K. Wiezorek, Microsc. Microanal. 21, 1465 (2015).
W.J. Boettinger, D. Shechtman, R.J. Schaefer, and F.S. Biancaniello, Metall. Trans. A 15A, 55 (1984).
W. Kurz and R. Trivedi, Acta Metall. Mater. 38, 1 (1990).
M. Gremaud, M. Carrard, and W. Kurz, Acta Metall. Mater. 39, 1431 (1991).
M.J. Aziz and T. Kaplan, Acta Metall. 36, 2335 (1988).
M. Gupta and S. Ling, J. Alloys Compd. 287, 284 (1999).
A.M. Prokhorov, V.I. Konov, I. Ursu and I.N. Mihailsecu, Laser Heating of Metals (Adam Hilger, IOP Publishing Ltd., Philadelphia, 1990), pp. 34–36.
S.B. Boyden and Y. Zhang, J. Thermophys. Heat Tran. 20, 9 (2006).
B.J. Siwick, J.R. Dwyer, R.E. Jordan, and R.J.D. Miller, Science 302, 1382 (2003).
D.B. Williams and J.W. Edington, J. Mater. Sci. 12, 126 (1977).
O.A. Atasoy, F. Yilmaz, and R. Elliott, J. Cryst. Growth 66, 137 (1984).
M.H. Burden and J.D. Hunt, J. Cryst. Growth 22, 99 (1974).
M.H. Burden and J.D. Hunt, J. Cryst. Growth 22, 109 (1974).
M.H. Burden and J.D. Hunt, J. Cryst. Growth 22, 328 (1974).
W.J. Boettinger, in Rapidly Solidified Amorphous and Crystalline Alloys, B.H. Kear, B.C. Giessen and M. Cohen, eds. (New York: Elsevier Science Publishing Co., Inc., 1982).
W. Kurz and D.J. Fisher, Fundamentals of Solidification (Switzerland: Trans Tech SA, 1984).
J.A. Dantzig and M. Rappaz, Solidification (Lausanne: EPFL Press, 2009).
W. Kurz and D.J. Fisher, Acta Metall. 29, 11 (1981).
G.J. Merchant and S.H. Davis, Acta Metall. Mater. 38, 2683 (1990).
M. Conti, Phys. Rev. E 58, 6166 (1998).
M. Conti, Phys. Rev. E 58, 6101 (1998).
J. Yota, J. Hander, and A.A. Saleh, J. Vac. Sci. Technol. A 18, 372 (2000).
Acknowledgements
This work was performed under the auspices of the U.S. Department of Energy, by Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344. Activities and personnel at LLNL were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering under FWP SCW0974. Activities and personnel at the University of Pittsburgh received support from the National Science Foundation, Division of Materials Research, Metals & Metallic Nanostructures program through Grant No. DMR 1105757. Work at Los Alamos National Laboratory (LANL) was performed under the auspices of the U.S. Department of Energy by Los Alamos National Security, LLC, under Contract No. DE-AC52-06NA25396. Activities and personnel at LANL were supported by AJC’s Early Career Award from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering. DTEM sample preparation at LANL was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy, Office of Science.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
McKeown, J.T., Zweiacker, K., Liu, C. et al. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing. JOM 68, 985–999 (2016). https://doi.org/10.1007/s11837-015-1793-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-015-1793-x