Skip to main content
Log in

Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Spark-plasma sintering (SPS) is used to fabricate fully-dense metal–matrix (Al/Mg) composites containing hard ceramic (boron carbide) and refractory metal (tungsten) inclusions. The study objectives include the modeling (and its experimental verification) of the process of the consolidation of the composites consisted of aluminum-magnesium alloy AMg6 (65 wt.%), B4C powder (15 wt.%), and W nano-powder (20 wt.%), as well as the optimization of the composite content and of the SPS conditions to achieve higher density. Discrete element modeling of the composite particles packing based on the particle size distribution functions of real powders is utilized for the determination of the powder compositions rendering maximum mixture packing densities. Two models: a power-law creep model of the high temperature deformation of powder materials, and an empirical logarithmic pressure–temperature–relative density relationship are successfully applied for the description of the densification of the aluminum-magnesium metal matrix powder composite subjected to spark-plasma sintering. The elastoplastic properties of the sintered composite samples are assessed by nanoindentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V.A. Artemyev, JTP Lett. 23, 5 (1997).

    Google Scholar 

  2. I. Bogachev, E. Olevsky, E. Grigoryev, and O. Khasanov, JOM 66, 1020 (2014).

    Article  Google Scholar 

  3. V.N. Gulbin, V.V. Polivkin, V.V. Cherdyntsev, M.V. Gorshenkov, RF Patent 2509818 (2014)

  4. F. Muktepavela, I. Manika, and V. Mironov, Mater. Des. 18, 257 (1997).

    Article  Google Scholar 

  5. V. Mironov, O. Filippov, and I. Boiko, Eston J. Eng. 16, 142 (2010).

    Article  Google Scholar 

  6. M.S. Yurlova, V.D. Demenyuk, L.Y. Lebedeva, D.V. Dudina, E.G. Grigoryev, and E.A. Olevsky, J. Mater. Sci. 49, 952 (2014).

    Article  Google Scholar 

  7. G. Lee, M.S. Yurlova, D. Giuntini, E.G. Grigoryev, O.L. Khasanov, J. McKittrick, and E.A. Olevsky, Ceram. Int. 41, 14973 (2015).

    Article  Google Scholar 

  8. X. Wei, C. Back, O. Izhvanov, O.L. Khasanov, C.D. Haines, and E.A. Olevsky, Materials 8, 6043 (2015).

    Article  Google Scholar 

  9. W. Li, E.A. Olevsky, O.L. Khasanov, C.A. Back, O. Izhvanov, J. Opperman, and H.E. Khalifa, Ceram. Int. 41, 3748 (2015).

    Article  Google Scholar 

  10. E.G. Grigoryev, L.Y. Lebedeva, O.L. Khasanov, and E.A. Olevsky, Adv. Eng. Mater. 16, 792 (2014).

    Article  Google Scholar 

  11. M.S. Yurlova, A.N. Novoselov, Y.S. Lin, O.N. Sizonenko, E.G. Grigoryev, O.L. Khasanov, and E.A. Olevsky, Adv. Eng. Mater. 16, 785 (2014).

    Article  Google Scholar 

  12. A.V. Pustovalov and S.P. Zhuravkov, Adv. Mater. Res. 1097, 3 (2015).

    Article  Google Scholar 

  13. S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Cambridge: Academic Press, 1982), p. 304.

    Google Scholar 

  14. T. Ichikawa, Phys. Status Solidi A 29, 293 (1975).

    Article  Google Scholar 

  15. O.L. Khasanov and E.S. Dvilis, J. Eur. Ceram. Soc. 27, 749 (2007).

    Article  Google Scholar 

  16. O.L. Khasanov and E.S. Dvilis, Adv. App. Ceram. 107, 135 (2008).

    Article  Google Scholar 

  17. A.V. Kyulemin, Metall. Mosc 200 (1978)

  18. E. Olevsky, Mater. Sci. Eng. R 23, 41 (1998).

    Article  Google Scholar 

  19. W. Li, E.A. Olevsky, J. McKittrick, A.L. Maximenko, and R.M. German, J. Mater. Sci. 47, 7036 (2012).

    Article  Google Scholar 

  20. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    Article  Google Scholar 

  21. Z.A. Munir, D.V. Quach, and M. Ohyanagi, J. Am. Ceram. Soc. 94, 1 (2011).

    Article  Google Scholar 

  22. R. Orru, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Mater. Sci. Eng. R 63, 127 (2009).

    Article  Google Scholar 

  23. S. Grasso, Y. Sakka, and G. Maizza, Sci. Technol. Adv. Mater. 10, 053001 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The work has been supported by the RF Ministry of Education and Science, Project RFMEFI57514X0003, by the State Program “Science”, Project#533 and by TPU Grant IFVT_85_2014. The support of the San Diego State University researcher by the US Department of Energy, Materials Sciences Division, under Award No. DE-SC0008581 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Olevsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvilis, E.S., Khasanov, O.L., Gulbin, V.N. et al. Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation. JOM 68, 908–919 (2016). https://doi.org/10.1007/s11837-015-1781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1781-1

Navigation