, Volume 68, Issue 3, pp 799–805 | Cite as

A Honeycomb-Structured Ti-6Al-4V Oil–Gas Separation Rotor Additively Manufactured by Selective Electron Beam Melting for Aero-engine Applications

  • H. P. Tang
  • Q. B. Wang
  • G. Y. Yang
  • J. Gu
  • N. Liu
  • L. Jia
  • M. Qian


Oilgas separation is a key process in an aero-engine lubrication system. This study reports an innovative development in oilgas separation. A honeycomb-structured rotor with hexagonal cone-shaped pore channels has been designed, additively manufactured from Ti-6Al-4V using selective electron beam melting (SEBM) and assessed for oilgas separation for aero-engine application. The Ti-6Al-4V honeycomb structure showed a high compressive strength of 110 MPa compared to less than 20 MPa for metal foam structures. The oilgas separation efficiency of the honeycomb-structured separation rotor achieved 99.8% at the rotation speed of 6000 rpm with much lower ventilation resistance (17.3 kPa) than that of the separator rotor constructed using a Ni-Cr alloy foam structure (23.5 kPa). The honeycomb-structured Ti-6Al-4V separator rotor produced by SEBM provides a promising solution to more efficient oilgas separation in the aero-engine lubrication system.



This work was funded by the Ministry of Science and Technology China under the National High Technology Research Program (No. 2013AA031103) and the National Natural Science Foundation of China (No. 51528401). M. Qian was a Guest Research Professor of the State Key Laboratory of Porous Metal Materials, NIN for the project period of January 2012 to June 2013.


  1. 1.
    C.N. Eastwick, K. Simmons, Y. Wang, and S. Hibberd, Inst. Mech. Eng. Part A 220, 770–771 (2006).Google Scholar
  2. 2.
    B. Chandra, K. Simmons, S. Pickering, and M. Tittel (Paper presented at ASME Turbo Expo 2010: Power for Land, Sea, and Air, Glasgow, Scotland, 2010), pp. 219–228.Google Scholar
  3. 3.
    C. Eastwick, S. Hibberd, K. Simmons, Y. Wang, I. Care, and A. Aroussi (Paper presented at ASME Turbo Expo 2002: Pressure Vessels and Piping Conference, Amsterdam, The Netherlands, 2002), pp. 215–220.Google Scholar
  4. 4.
    X.X. Cai, D. Xiong, and K.L. Zhou, Vocat. Tech. Coll. 8, 23 (2008).Google Scholar
  5. 5.
    S. Smith, US Patent 4049401.Google Scholar
  6. 6.
    K. Willenborg and M. Klingsporn, (Paper presented at Proceedings of GT2006 ASME Turbo Expo, Barcelona, Spain, 2006).Google Scholar
  7. 7.
    Air/oil separators, Accessed 22 August 2015.
  8. 8.
    A.W. Elias, A Systematic Study on the Mechanical and Thermal Properties of Open Cell Metal Foams for Aerospace Applications (North Carolina State University, 2004).Google Scholar
  9. 9.
    V. Paserin, S. Marconson, J. Shu, and D. Vilkinson, Adv. Eng. Mater. 6, 454 (2004).CrossRefGoogle Scholar
  10. 10.
    J. Barnhart, Prog. Mater Sci. 46, 559 (2001).CrossRefGoogle Scholar
  11. 11.
    H. Choe and D.C. Dunand, Mater. Sci. Eng. A 384, 184–193 (2004).CrossRefGoogle Scholar
  12. 12.
    O. Smorygo, V. Mikutski, A. Leonov, A. Marukovich, and Y. Vialiuha, Scripta Mater 58, 910–913 (2008).CrossRefGoogle Scholar
  13. 13.
    H. Choe and D.C. Dunand, Acta Mater. 52, 1283–1295 (2004).CrossRefGoogle Scholar
  14. 14.
    J. Lorenz and R. Zhofen, US patent 4714139.Google Scholar
  15. 15.
    A.D. Krul and J. Fla, US patent 5716423.Google Scholar
  16. 16.
    P. Gennaro, M. Romeo, G. Bene, F. Tortorola, and G.P. Zanon, in particular for a rotary separator, EP 2156941 A1 and EP 2156 941 B1.Google Scholar
  17. 17.
    S.L. Lu, H.P. Tang, Y.P. Ning, N. Liu, D.H. StJohn, and M. Qian, Metall. Mater. Trans. A 46, 3824–3834 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Porous Metal MaterialsNorthwest Institute for Nonferrous Metal Research (NIN)Xi’anChina
  2. 2.Shenyang Engine Design & Research InstituteShenyangChina

Personalised recommendations